Joint second- and third-order shear statistics and cosmological constraints with CFHTLS

Martin Kilbinger Institut d'Astrophysique de Paris

Paris, 7 Novembre 2006

Recent results of (second-order) cosmic shear measurements

 $\sigma_8 \; (\Omega_{\rm m} = 0.3)$

VIRMOS-DESCART	van Waerbeke et al. 2005	0.83 ± 0.07
CFHTLS wide	Hoekstra et al. 2006	0.85 ± 0.06
CFHTLS deep	Semboloni et al. 2006	0.9 ± 0.34
GEMS	Heymans et al. 2005	0.68 ± 0.13
GEMS/GOODS	Schrabback et al. 2006	0.52 ± 0.2
GaBoDS	Hetterscheidt et al. 2006	0.8 ± 0.1
CTIO	Jarvis et al. 2006	0.81 ± 0.15 (+ SN, CMB)

Motivation for 3rd-order shear statistics

• Together with 2nd order: lift parameter near-degeneracies, e.g.: $s_3(\theta) = \frac{\langle \kappa^3(\theta) \rangle}{\langle \kappa^2(\theta) \rangle^2}$ independent of σ_8 [Bernardeau, van Waerbeke, Mellier 1997]

[CFHTLS wide]

- Dark matter power spectrum and bispectrum contain complementary information about cosmology.
- Probe Non-Gaussianity of the LSS on small scales, ($\lesssim 10'$), non-linear gravitional collapse, mode-coupling of the LSS, virialization of halos in hierarchical structure formation

power spectrum

bispectrum

Weak lensing observables

Two-point correlation function

$$\begin{array}{ccc} \theta & \langle \gamma_{t} \gamma_{t} \rangle \\ \theta & \gamma_{t} & \langle \gamma_{\times} \gamma_{\times} \rangle \\ \langle \gamma_{t} \gamma_{\times} & \langle \gamma_{t} \gamma_{\times} \rangle \\ \langle \gamma_{\times} \gamma_{t} \rangle \end{array} \right\} = 0 \quad \text{because of parity}$$

2PCF $\xi_{\pm}(\theta) \equiv \langle \gamma_{t} \gamma_{t} \rangle \pm \langle \gamma_{\times} \gamma_{\times} \rangle$, two components

Three-point correlation function

"Natural components" $\Gamma^{(0)}, \Gamma^{(1)}, \Gamma^{(2)}, \Gamma^{(3)} \in \mathbb{C} = \text{linear}$ combinations of the $\langle \gamma_{\mu} \gamma_{\nu} \gamma_{\lambda} \rangle$ [Schneider & Lombardi 2003]

3PCF has 8 (non-vanishing) components, depends on 3 quantities and is not a scalar 🙁

7/19

Flavours of 3^{rd} -order statistics

projected 3PCF, integrated over elliptical region
 [Bernardeau, van Waerbeke & Mellier 2002, 2003]

[VIRMOS-DESCART]

Flavours of 3rd-order statistics

- projected 3PCF, integrated over elliptical region [Bernardeau, van Waerbeke & Mellier 2002, 2003]
- Aperture-mass $\langle M_{\rm ap}^3 \rangle$: CTIO [Jarvis et al. 2004] and VIRMOS-DESCART [Pen et al. 2003]

Aperture-Mass Statistics

Mass overdensity

Tangential shear in aperture
$$\gamma_{0}$$

$$M_{\rm ap}(\theta) = \int d^2 x \, U_{\theta}(x) \kappa(\vec{x})$$
$$= \int d^2 x \, Q_{\theta}(x) \gamma_{\rm t}(\vec{x})$$

Second- and third-order statistics

- variance $\langle M^2_{\rm ap}(\theta) \rangle$ probes power spectrum $P_\kappa(\ell)$ at a scale $\ell \propto 1/\theta$
- skewness $\langle M_{\rm ap}(\theta_1) M_{\rm ap}(\theta_2) M_{\rm ap}(\theta_3) \rangle$ probes bispectrum $B_{\kappa}(\ell_1 \propto 1/\theta_1, \ \ell_2 \propto 1/\theta_2, \ \ell_3 \propto 1/\theta_3)$, cross-correlation or mode coupling of the large-scale structure on different scales [Schneider, MK & Lombardi 2005]

convergence κ

 $\frac{M_{\rm ap}^2(\theta)}{2.3'}$

1.6e-04 6.2e-04

6.9e-06

3.9'

shear γ

(2.3', 2.3', 3.9')

1.0e-06

-3.2e-07

11/19

(1.4', 1.4', 2.3') (1.4', 2.3', 3.9') $M_{\rm ap}^3(\theta_1,\theta_2,\theta_3)$

Why $M_{\rm ap}$?

- $\langle M_{\rm ap}^3 \rangle$ is a scalar
- separates E- & B-modes
- one can obtain $\langle M_{\rm ap}^2 \rangle$, $\langle M_{\rm ap}^3 \rangle$ from 2pcf, 3pcf or directly from galaxy field [work in progress]
- localized filter \rightarrow simple relation to power spectrum/bispectrum
- no information loss if $\langle M^3_{\rm ap} \rangle$ is used instead of 3pcf [work in progress]

Predictions for CFHTLS wide

- Ray-tracing simulations [T. Hamana]
- All galaxies at redshift $z_0 = 0.977$, $\bar{n} = 25/\operatorname{arcmin}^2$
- Shear signal for aperture radii θ between 1 and 15 arc minutes
- Error budget: shape noise, (non-Gaussian) cosmic variance, cross-correlation between $\langle M^2_{\rm ap} \rangle$ and $\langle M^3_{\rm ap} \rangle$ [MK & Schneider 2005]
- Fisher matrix for 1σ errors

Parameter constraints

Fisher matrix with 5 parameters assuming flat CDM cosmology $\sigma(z_0) = 0.01$

Dark energy constraints

Redshift uncertainty

Parameter constraints summary

Flat ΛCDM

	$\Omega_{ m m}$	Γ	σ_8	$n_{ m s}$
$\langle M_{\rm ap}^2 \rangle$	0.085	0.13	0.141	0.27
$\langle M_{\rm ap}^{\hat{3}} \rangle$	0.068	0.04	0.085	0.076
combination	0.015	0.032	0.02	0.068

General Λ CDM

	$\Omega_{ m m}$	Ω_{Λ}	Γ	σ_8	$n_{ m s}$
$\langle M_{\rm ap}^2 \rangle$	0.091	0.31	0.21	0.2	0.27
$\langle M_{\rm ap}^{3} \rangle$	0.074	0.11	0.051	0.095	0.09
combination	0.029	0.087	0.032	0.033	0.079

Figures are marginalized 1σ -errors, $\sigma(z_0) = 0.01$

Summary and Outlook

- Third-order cosmic shear statistic has been detected and is expected to be measured with high significance in CFHTLS
- Joint $\langle M_{\rm ap}^2 \rangle$ and $\langle M_{\rm ap}^3 \rangle$ observations can improve parameter constraints by a factor of 3 6 (with flat prior)
- For tight constraints on dark energy tomography needed [Takada & Jain 2004]
- Source redshifts have to be known accurately
- Need better models of non-linear structure formation!

References

- Bernardeau, F., van Waerbeke, L. & Mellier, Y. 1997, A&A, 322, 1
- —. 2002, A&A, 389, L28
- —. 2003, A&A, 397, 405
- Hamana, T. & Mellier, Y. 2001, MNRAS, 327, 169
- Jarvis, M., Bernstein, G., & Jain, B. 2004, MNRAS, 352, 338
- Kilbinger, M. & Schneider, P. 2005, A&A, 442, 69
- Pen, U.-L., Zhang, T., van Waerbeke, L. et al. 2003, ApJ, 592, 664
- Schneider, P., Kilbinger, M. & Lombardi, M. 2005, A&A, 431, 9
- Schneider, P. & Lombardi, M. 2003, A&A, 307, 809
- Scoccimarro, R. & Couchman, H, 2001, MNRAS, 325, 1312
- Takada, M. & Jain, B. 2004, MNRAS, 348, 897