CFHTLS National meeting 6 November 2006

Variable Objects in SNLS

Dominique Fouchez Pascal Ripoche (Centre de Physique des Particules de Marseille)

Variable Objects in SNLS

The SNLS DataSet
Detection of all true variable objects (ACE)
Classification of all Variable objects

The SNLS DataSet

[≭] 4 Deep field :

• Each lunation : (20 days)

• 5 to 3 epoch in 4 filters (griz)

Fouchez/Ripoche CFHTLS Nation

The goals and requirements

🛎 Goals

- Real time SN detection for spectroscopic follow-up
- Reprocessed SN detection
- Supernovae rate
- SN selection bias studies for cosmology (malquist,...)
- SN identification bias studies for cosmology (contamination,...)

Requirements

- No Human scanning nor specific post-selection/identification
- Work on real time data
- Work on reprocessed data (offline)
- Permit selection efficiency determination
- Standalone photometric identification (controlled by spectro follow-up)

ACE : Principle

- Part I : Perform image subtraction on each night from deep reference image
 - Variable PSF convolution (a la Alard)
- * Part II: 'Computer scanning' procedure to select the 'true' PSF-like variations
- Part III: Construct true variable objects from set of consecutive true fixed position variations.
 - Multicolor lightcurve

20 000 000 Detections per year !!! Fouchez/Ripoche CFHTLS National metting 6 November 2006

PartII: The 'computer scanning' method

- Identification of Good/Bad Detections with shapelets
- Neural network training phase
- Results

Shape analysis of detections

Shapelet decomposition

- Project each detection vignet on the 16 first functions of a cartesian shapelets base. 16 coefficient then determine the shape.
- A standard 2D gaussian image (A standard point like object image) will project on the first function only !

Neural Net training

Detection samples

- Background = from true images (back + small part of signal)
- Signal = from Simulation (PSF-like variation added on true

Neural Net training

Train on half of detection/ Test other half Input 127000 Bgd / 16000 Sig of detections SoN>5

• Result of NN output :

EFF/rej = 92.	/15	SoN>8
EFF/rej = 89	/8	SoN>5
EFF/rej = 46	/2.8	5>SoN>3

Fouchez/Ripoche CFHTLS Nation

Computer Scanning : Result

Good & bad detections according to the NN

ACE Part III Construction of variable point-like objects

Enter all detections in a database

- (5.10⁶ /field*semester)
- Variable object (event) is created if at least one good det exists

Constructed epoch after epoch + backward search when event created.

Selection of good point-like events

• Number of good and bad dets : Ndetok,Ndetbad

Selection of good point like events

All events with at least 5 good detections and less than 25% bad

Study of variable object selection

Selection from good/bad detections

CUT1 = GOOD >4 (id 3 for lightcurve + 2 for color ...)

CUT2 = BAD < 0.25 (GOOD+BAD)

HUMAN SCANNING OF RESULTS: NO BAD CAND FOUND -> BGD = percent level ? Fouchez/Ripoche CFHTLS National m

Full monte carlo of SNIA

High efficiency result

Summary Automatic Candidate sElection

- [™] In one fully automated PATH
 - Construct candidate events from set of subtracted images to reference
 - Use all color filters
 - Select good variable object on a first step
 - Select good Snia events in a second step
- Selection is based on well defined and adjustable cuts, no pre-post human intervention
- Reasonably fast (<24H for a field*semester)</p>
- Can be used on true image, MC images, real time or offline reprocessing

First Application French RealTime Detection pipeline

Second Application: Classification/identification of variable objects

- DATA Set = Season 1+2 on 4 Deep fields, all reprocessed for image subtraction (same image input as the one use for precise photometry, full simulation of fqke run in parallel)
 - After ACE running : Number of 'true' Variable objects = 2780
 - Spectro information on 310 objects
 - CFHT Photometric catalog

Examples of Lightcurves ...

Classification/identification of variable objects

acecand/ace_100936

05D3dd SNIa z= 0.48 SNIa

Classification/identification of variable objects « First attempt » * The Lightcurve Shape classification

Very Fast Variation
Slow variation (slow rise)
Fast rise - slow drop : plateau like
Fast rise - fast Drop : SNI like

Very Fast Variation

Try to fit a 'Skewed Normal' Distribution

(cut on Chi2)

(landau curve+polynomial)

Slow variation

380

400

X title

Fast Rise Fast Drop

Cut on Δ mag+20 and Δ mag-10

What are thoses objects ?

- Star and AGN candidates = Very Fast or Slow?
 600
- SNIIP = Slow drop ?

• 550

SNI, SNII = Fast Drop ?

• 400

Fouchez/Ripoche CFHTLS National met

Fouchez/Ripoche CFHTLS National metting 6 November 2006

Ζ

Conclusions

- ACE shows now to be a well tuned and controled tool for variable object selection.
- About 10 times more Objects than spectred SNIa have been found
- SN like objects are probably twice (or more) numerous than Spectred SN
- Future : Use more precise methods for Class selection
 - use of Spectral template for known class : ex SALT for SNIa (already check on real time and will be used for rate computation) can be probably very powerfull for SN type separation
 - Special strategies for AGN/Stars ?

Detection of SNIa-like objects

* Preliminary/simple/Poor man etc ...

Select against AGN/Variable stars : multipeaks
Select against IIP : plateau
Select against CC : color

Selection of SNIA like events

10 7.5 5 2.5

10

sfitsno

No second peak nor plateau Max in i after/before 40 days/ max i color

Study of variable object selection

Selection from good/bad detections

Can we go lower in significance ? GOOD = 1,2,3,4 N= 400000, ???

HUMAN SCANNING OF RESULTS: MANY BAD CAND FOUND/ FEW POSSIBLE GOOD CAND ALL UNSIGNIFICANT

