Strong Lensing Legacy Survey

Automated search for strong lenses in CFHTLS data

IAP: C. Alard, B. Fort, Y. Mellier, JF. Sygnet

Toulouse: R. Cabanac (Tarbes), G. Soucail

Marseille: JP. Kneib

How to find highly distorded (arc-like) images, using automated softwares ?

Deflection par une masse

Relativite Generale au 1er Ordre $\theta = \frac{GM}{b}$

Geometry of gravitational lensing

$$\beta = \theta - \frac{D_{ls}}{D_s} \alpha \qquad \text{Lens equation}$$

Lentille ponctuelle

Spatially extended lens

Elliptical lens with isothermal profile

Peter Newbury 1997

Finding arcs or arclets in wide field CFHTLS images

Most of the time

somewhat unusual

Modeling arcs

local elongation and orientation at each point of the image

Estimating local geometry

Parameters of local geometry

Estimation of θ not very noisy using 2^{nd} order moment

Variance on θ proportional to noise variance

$$\sigma_{\theta} \simeq \frac{1}{4} \frac{S}{N} \simeq 1^{\circ} \text{ for } \frac{S}{N} = 10$$

Elongation a:/b --> divergent, very sensitive to noise and to details of the local distribution

Estimating local elongation

Marginal Distributions projected along axis

Elongation estimator

$$Q(x_{0}, y_{0}) = \frac{1}{2M} \frac{I_{Y}(x_{0})}{SUP.[I_{X}(x_{0}+x)]_{[-M < x < M]}}$$

Decomposable locally $I(x+x_0, y+y_0) = f(x)g(y)$

$$Q(x_0, y_0) \leq \frac{g(0)}{\int g(y) dy} \qquad g(y) = \alpha \ G(\frac{y}{b}) \qquad Q(x_0, y_0) \leq \frac{G(0)}{b}$$

Bounded estimator, maximal for small b (PSF size) Equal to sup bound if distribution is flat along main axis ~ Arc

Other propriety of the estimator

Homothetic profiles:
$$f(x) = \alpha F(\frac{x}{a})$$
; $g(x) = \beta G(\frac{x}{b})$

$$(a,b) \ll M$$
, $Q(x_0, y_0) = \frac{G(0)}{2M} \frac{a}{b}$

$$a \gg M$$
, $Q(x_0, y_0) \rightarrow \frac{G(0)}{b}$ Saturation value

Noise on estimation of local elongation

Truncated expansion of Q(x,y) for small errors Combination of errors for the 2 marginale distribution using an order statistics

$$\frac{Q}{N_Q} \simeq 0.45 \frac{S}{N}$$

For $\frac{S}{N} = 10$ noise is only ~ 20% of signal Dynamic on Q(x,y) ~ factor 3, noise is not an issue

Illustration with CFHTLS wide image

Small arcs – observational limits

Galaxy groups

Mass ~ 10^{13} Solar mass

Velocity dispersion inside group a few hundreds km/s

Lensing du to galaxy groups, separations of a few arc seconds

Arcs appears near critical radius size of system is close to Einstein radius ----> Estimation of Einstein radius ----> Mass of deflector

Effect of sub-structures, small perturbations of caustics --> arc shape modified col dark matter granularity, visible in arcs ?

Uneasy to disentangle from intrisic source granularity Future

Data acquisition & data reduction

Spectro & redshifts: ESO Proposals, Gemini

Automated search in new CFTHLS releases

Comparison of the observational search with cosmological models – Ray tracing in numerical simulations, reconstruction of arcs, computation of arcs properties & estimation of detection efficiency