CFHTLS French Users Meeting 2006

Frédéric MALACRINO

Searching for Gamma-Ray Bursts Optical Counterparts in the Very Wide Survey Data

CONTENTS

I- GAMMA-RAY BURST AND AFTERGLOW

- 1- Prompt Emission
- 2- Afterglows
- 3- Fireball Model
- 4- Orphan Afterglows

II- OUR SEARCH FOR OPTICAL AFTERGLOWS

- 1- Canada-France-Hawaii Telescope
- 2- Real Time Analysis System
- **3-** Statistics
- 4- Variable Objects

III- ANALYSIS AND DISCUSSION

- 1-Simulations
- 2- Constraints

CONCLUSION AND FUTURE

I-1 Prompt Emission

Short and bright flash of gamma-ray and x-ray photons

2704 BATSE Gamma-Ray Bursts

+90

- Frequency: 2.day⁻¹
- Energy: 10⁵² erg
- Duration: 10ms-100s

+180

- 2 classes:
- \rightarrow Short GRB t<2s
- \rightarrow Long GRB t>2s

-180

I-2 Afterglow

Counterpart of the GRB at other wavelengths (x-ray to radio) X-Ray Afterglow (GRB970228)

Costa et al. 1997

Optical Afterglow (GRB050525)

Association with host galaxies (mostly irregular) and supernovae (Ib, Ic)

Courbes de lumière

Decreasing like a power law with time, containing eventually a break

Mean parameters: $a_{0} \sim 1,2$ $\alpha_1 \sim 2$ $t_{b} \sim 1,5 \text{ day}$ $m_{1} \sim 20,5$ $m_{host} \sim 25$

I-3 Fireball Model

- Collapse of a massive star into a black hole
- Internal shocks within the ejecta → prompt emission
- External shocks on the interstellar medium → afterglow

Collimation of the prompt emission

Bloom et al. 2003

53

I-4 Scientific Justifications

- Local population of GRBs
- More associations with supernovae
- \bullet Constraint on the opening angle of the jet θ
- Collimation factor:

$$f_c = \frac{1}{(1 - \cos\theta)} \approx \frac{2}{\theta^2}$$

• Connected with the number of afterglows but depending on the model used N

$$\beta = \frac{N_{tot}}{N_{GRB}}$$

6

II-1 Canada-France-Hawaii Telescope

CHFT

- Located on the Mauna Kea, in Hawaii
- 3,6 meters mirror
- Instruments: MegaCAM, WIRcam, Espadon, etc...

MegaCAM

- 340 millions of pixels
- 36 CCDs
- 1 square degree with 0,185".pixel⁻¹
- 5 filters: u* g' r' i' z'

Very Wide Survey

- Part of the Legacy Survey
- 5 years of observations
- 1200 square degrees
- 3 filters: g' r' i'
- Observational strategy optimised for detection and follow-up of Trans-Neptunian Objects (TNO)

II-2 Real Time Analysis System

Automatic process of MegaCAM images to detect variable sources

Characterisation of variable objects

- Rejection or validation by a member of the collaboration
- Choice between **13 classes** (seeing problem, CCD defect, variable star, afterglow candidate, ...)
- Help for the characterisation :
 - → Visualisation of selected objects on thumbnails
 - → **Figures** showing evolution and variation
 - → Display of **parameters** (magnitude, FWHM, ...)
 - → Automatic search in **images of the DSS**

→ **Online form** allowing the search of objects in the entire Very Wide Survey database

Thanks to these tools, the characterisation of variable sources is **fast and easy**

II-3 Statistics

- 2231 images processed
- 87475622 objects analyzed

Filter	N _{obs}	S _{obs} [° ²]	δ _{pos} ["]	M _{lim}	N _{obj} /deg ²	% error
g'	536	481,1	0,46	23,1	31910	0,53
r'	1106	993,2	0,53	22,6	45332	0,49
i'	589	530,6	0,52	22,5	51075	0,17

- 1048 comparisons done
- 42424 variable objects \rightarrow less than 800 per million astrophysical objects

Type	Ncmp	S _{cmp} [° ²]	Nast	\mathbf{N}_{sin}	N _{var}	N ⁶
Triple	535	471,8	20801	-	29450	624
Double	513	448,4		3234	12974	802

II-4 Variable Objects

CCD 17 Num 01

- More than 90% of variables objects are false detections
- 1951 variable stars
- 20801 moving objects

Afterglow Candidates

23 afterglow candidates but not confirmed

13

Our Best Candidate

III-1 Simulations

Main goals: → Compute the number of afterglows expected
→ Compare the RTAS efficiency with other strategies

• Simulation of simple afterglows based on real parameters

 \rightarrow Date and position at random

 $\rightarrow \alpha$ et m₁ draw according to the observed distribution

Comparing Strategies

• 4 strategies: \rightarrow ROTSE-III Transient Search (Rykoff et al. 2005)

- \rightarrow MPI/ESO (Rau et al. 2006)
- \rightarrow Very Wide Survey (Malacrino et al. 2006)

 \rightarrow Optimal survey

Strategy	β	S _{obs} [° ²]	t _{vis} [day]	δ_t	M _{lim}	N _{exp}
ROTSE-III	2	65550	0,07	30 min	18	0,6
MPI/ESO	15	55	3,5	3 days	23	0,3
Very Wide Survey	11	1178	2,5	2 days	22,5	4,6
Optimal Survey	21	250	7,5	7 days	24	5,6

The Very Wide Survey is by far the best observational strategy to detect optical afterglows

III-2 Constraint on the Number of Afterglows

Constraining the Collimation Factor ?

- GRBs without gamma-ray emission (failed GRB)
- GRBs without visible afterglow (about 50%)
- The link between β and f strongly depends on the model used

• For some models, $\theta_{gamma} / \theta_{afterglow}$ is constant \rightarrow fc independent from β

→ Very difficult to constrain physics of GRBs with orphan afterglow

Using radio afterglows: $f_c > 20 - 100$ (Levinson et al. 2002)

CONCLUSION AND FUTURE

No afterglow confirmation in the Very Wide Survey **BUT** the best constraints on the number of afterglows

The RTAS can be seen as a precursor of future large surveys 50 afterglows expected \rightarrow 611 hours of observation with MegaCAM

PAN-STARRS: - 4 1.8 meters telescopes in Hawaii

- 3° field of view
- 6000°² observed per night down to r = 24

LSST: - 8.4 meters telescope in Chile

- 9,5°² field of view with 0,2".pixel⁻¹ resolution
- 200000 images per year