

PSFEx:a generic tool for extracting the PSF in astronomical images

E.Bertin, IAP & Obs. de Paris/LERMA

Outline

- Use of the PSF for detection, measurement and classification of astronomical sources
- Modeling the PSF with PSFEx
- Finding « prototype » stars
- Quality control at TERAPIX
- PSF-fitting with SExtractor

Detection and the PSF

- Matched (optimum) filtering for detection
 - Stationary noise with power spectrum *P*(*k*) and isolated point-sources: convolve with

$$h = \phi^* * \mathsf{F}(P^{-1})$$

Irwin 1985

Source-deblending and profile-fitting in crowded star fields

- The PSF profile $\phi(\mathbf{x})$ can be quickly centered on isolated stars using a simple gradient descent
 - At each step, derive a profile offset $\Delta \mathbf{x}$ by fitting

$$F.(\phi + (\nabla \phi).\Delta x)$$

 Clumps of overlapping stars can be fitted using the same simple technique with additional constraints (no negative flux, minimum distance between stars)

Astrometry

- Effects of crowding
- The definition of a star position can be ambiguous for asymmetric PSFs
 - Flux-dependency when centroiding thresholded profiles

Point-source photometry

• Profile-fitting photometry always optimum in terms of SNR:

- On photon-noise limited images with negligible background
 - $\sigma_i^2 \propto \phi_i$: profile-fitting equivalent to integration of pixel values within an aperture
- On photon-noise limited images with dominant background
 - $\sigma_i^2 \propto cste$: profile-fitting equivalent to a profile-weighted sum of pixel values

Star/galaxy separation

 Local PSF used as a reference for computing the likelihoods p(y|S) and p(y|G) of a star/galaxy Bayesian classifier (Sebok 1979, Valdes 1982 and followers)

IPAM workshop 01/2004

Morphology of extended sources

- Non-linear galaxy profile-fitting (e.g. GIM2D)
 - Reconvolution with the local PSF needed at each iteration
- Decomposition on basis functions (PCA, shapelets)
 - Basis functions are convolved with the local PSF before fitting

	•	0	×,	н	*	*	111	8	0	*	*
	0	٠		÷#1	*	4		6	8	*	*
	-	•	-	Ŧ	#	-		~	÷	*	*
0	٠	•	*		*	**	121		۲	*	*
		e.	1	H	*	#	æ	đ.	e	*	*
1		15		\mathcal{H}	the state	H	di-	15	3)	:	it.
\mathcal{F}_{i}		×	*	*	*	*	÷r.	*	6	*	*
	•	•	×	-1	*	*	-11	*	4	*	*
	•	-	*	π	*	*	Ŧ	3	æ	*	*
-	•	•	÷	H	*	*	4.	æ	3	*	*

Parametric deconvolution of galaxies

Measuring morphological parameters

- I<23
- 3h exposure with 0.7" seeing (ground-based) on a 3.6m telescope

Building a model of the PSF

- Software written in 1998 for SExtractor
 Not publicly available yet
- Requirements:
 - Model variations across the field
 - Be able to deal with (moderate) undersampling
 - Number of degrees of freedom as small as possible while being capable of modeling any arbitrary (optical) PSF

PSF models

- Analytical vs tabulated models
 - Analytical models are simpler to implement and can deal with undersampling "naturally"
 - BUT: simple (not instrument-dependent) models have trouble handling PSF features like diffraction effects (spikes and rings)
 - Such features can be tabulated provided that the data are correctly sampled, but this is not always the case (ex: WFPC2, NICMOS,...)
 - Tabulated models don't have these limitations
 - BUT: over- and under-sampling are not properly handled.

A solution: "super-tabulation"

- The PSF is tabulated at a resolution which depends on the stellar FWHM (typically 3 pixels/FWHM)
 - Minimize redundancy in cases of bad seeing
 - Handle undersampled data by building a "super-tabulated" PSF model
 - Work with diffraction-limited images (images are band-limited by the autocorrelation of the pupil)
 - Find the sample values by solving a system using stars at different positions on the pixel grid
 - Intuitive approach: solve in Fourier space. Easy but suboptimum (no weighting)
 - Working in direct space would give much more robust results

Solving in Fourier space

Solving in direct space

 A resampling kernel h, based on a compact interpolating function (*Lanczos3*), links the "super-tabulated" PSF to the real data: the pixel i of star j can be written as

$$P_{ij} = \sum_{k} h_j \left(\vec{\mathbf{x}}_k - \vec{\mathbf{x}}_i \right) \varphi_k$$

- The φ_k 's are derived using a weighted χ^2 minimization.
 - Lots of computations involved:

Sparse matrix processing might prove useful for large models

The practice the oversampling of faint peripheral pixels can be dropped.

Lanczos interpolation kernel

Testing on simulated, undersampled data

Diffraction-limited FWHM ≈ 1pixel Moderately crowded

Automatic candidate selection

•	•	•		•			•	•	•		•	•	•				•	•	•	•									
•	•	•				•	•		•			•	•	•		•	•	•			•	•		•		•	•		•
•	•	•		•		•	•	•		•		•	1.			•	•		•	•	•		•				•	•	•
•		•	•		•		•	•	•		•	•	•			•	•	•	•	•	4	•		•	•	•	•	•	•
•	•		•		•	•	۲		•			•	•			•		•		•	•	•	•	•		•	•	•	•
•	•		•			•		•	•	•		•	•	•		•		•			•	•			•	•		•	•
•		•	•		•	•	•	•		•	•		•	•	•		•	•	•		•		•	•	•				•
•	•	•	•	•		•			•	•	•				•							•				•		•	•
•	•	•	•		•		•				•		•	•			•				•	•	•	•					•
•	•		•			•	•		•	•			•	•	•	•		•		•			•	•	•	•			•
•	•	•			•	•	•	•			•		•	•	•	•	•	•		•		•	•	•	•	•	•		•
						•		•	•		•		•	•		•		•	•				•	•				•	
					•	•												•									•		
•	•						•			•		•			•			•	•		•		•			•		•	

Recovered PSF with simulated, undersampled data

Residuals on simulated, undersampled data

Simulated, defocused data

Diffraction-limited FWHM ≈ 7 pixels Moderately crowded

Results with simulated, defocused data

IPAM workshop 01/2004

Using different basis functions

• The array of "super-pixels" can be replaced by a combination of ad-hoc basis functions ψ_b (the c_b are the parameters to determine)

$$P_{ij} = \sum_{b} \sum_{k} h_j \left(\vec{x}_k - \vec{x}_i \right) c_b \psi_{bk}$$

- Should be more robust in many cases
- One might use PCA components of the theoretical PSF aberrations for diffraction-limited instruments.

Handling PSF variations

- PSF variations are assumed to be a smooth function of object coordinates
 - The variations can be decomposed on a polynomial basis X_{I}

$$\boldsymbol{P}_{ij} = \sum_{l} X_{l} \sum_{k} h_{j} (\boldsymbol{x}_{k} - \boldsymbol{x}_{i}) \varphi_{kl}$$

- A third order polynomial (*I* = 10) is generally sufficient to describe the variation of the PSF with position in the field
- Different basis functions, with arbitrary parameters (flux, instrumental context, etc.) can be used for X_I
- In our case a KL decomposition (e.g. Lupton et al. 2001) was not beneficial (and in fact it makes the rejection of « bad » PSF prototypes harder).

Example of φ_{lk} PSF components for a UH8k image

Reconstructed UH8k PSF

Testing on real, non-linear data

Schmidt-plate exposures in the galactic plane FWHM ≈ 3pixel Second order polynomial of FLUX_AUTO

Star subtraction on Schmidt-plate data

Schmidt-plate exposures in the galactic plane FWHM ≈ 3pixel Second order polynomial of FLUX_AUTO

Finding prototype stars

- Basically we are looking for something we don't know yet
 - PSF variability makes the stellar locus "fuzzy" in feature space
 - Problems due to crowding at low galactic latitude
 - Confusion with galaxies in cluster areas
- Empirically designed automatic selection based on magnitude,half-light radius, ellipticity, crowding and saturation flags seems to work fine
 - Remaining configuration parameters for selection essentially consist of acceptable FWHM range and ellipticity
 - Iterative rejection procedure based on similarity between samples and a rough PSF estimate

Half-light radius/magnitude diagram

QualityFITS

- AstroWISE project developed at TERAPIX by F. Magnard
- Provides quality control for FITS images
 - Background homogeneity
 - PSF and variability
 - Source counts
 - Weight maps
- Diagnostic generated automatically for all incoming and outgoing MEGACAM survey images
 - FITS and XML formats
 - Access from <u>Spica</u>

Fitting the PSF model

- Identify star "clusters", like in DAOPhot (Stetson 1987) and proceed interatively:
 - First a unique star is fitted
 - The basic centering algorithm is a modified gradient descent
 - The star is subtracted from the cluster and a local maximum sufficiently distant from the peak of the first star is identified
 - Two stars are fitted and subtracted, and a new maximum is found
 - Iterate up to 11 stars/cluster or
 - Stop if stars coalesce during the centering process

Current Performance

- Processing speed:
 - For building the PSF model: ~130 stars/second (Athlon 2GHz)
 - For the PSF-fitting: ~100-500 stars/second (Athlon 2GHz)
- Measurement accuracy:
 - Slightly better than DAOPhot on properly sampled, non-crowded fields
 - Slightly worse than DAOPhot (one pass) on properly sampled, crowded fields
 - Significantly better than DAOPhot on undersampled images
- Poor completeness (~99% for "obvious" detections) because of the underlying SExtractor detection scheme

Application: Comparison with DAOPhot on NGC 6819 (CFH12k)

Kalirai et al. 2001a

E. Bertin

IPAM workshop 01/2004

Application: Photometric accuracy in NGC 6819 (CFH12k)

Kalirai et al. 2001b

E. Bertin

Application: Colour-magnitude diagrams in NGC 6819 (CFH12k)

Kalirai et al. 2001b

Conclusions

- The PSFEx approach to PSF modeling gives reliables results
 - Undersampled data (down to 1 pixel FWHM)
 - Variability across the field
 - Moderately crowded fields
- Currently available as an external module: "PSFEx"
 - Soon to be publicly released (together with QualityFITS)
 - But not for PSF fitting in SExtractor
 - Mostly completeness issues
- Wait for SExtractor3
 - New detection scheme
 - Handling of variable noise ACF