IR Counterpart of the CFHTLS Deep Fields: The WIRCAM Deep Survey (WDS)

R. Pello, J. F. Le Borgne, G. Soucail (LAOMP, Toulouse)

- + (in alphabetic order)
- T. Contini (LAOMP, Toulouse)
- P. Fouqué (LAOMP, Toulouse)
- P. Hudelot (LAOMP, Toulouse)
- F. Ienna (LAOMP, Toulouse)
- J. P. Kneib (LAM, Marseille)
- J. Richard (LAOMP, Toulouse)
- D. Schaerer (O. Genève)

Motivation for a Deep Near-IR counterpart of the *CFHTLS Deep Survey*:

- CFHTLS Deep Survey + *WIRCAM DEEP SURVEY* (WDS):
 - WIRCAM DEEP FIELD (WDF, ~1 deg2)
 - WIRCAM ULTRA DEEP FIELD (WUDF, ~0.11 deg2)
- Near-IR photometry is needed

11/16/06

- To consistently follow the stellar population contributing to the flux at $\lambda \ge 4000$ Å from $z \sim 0$ all the way to $z \sim 4$.
- To map the star-forming and AGN activity up to the highest redshifts $(z \sim 6-10)$.

R. Pello/ WIRCAM Meeting IAP nov04

Science goals:

WIRCAM DEEP FIELD (WDF, ~1 deg2)

- Constraining the cosmological scenarios for galaxy formation & evolution: history of mass assembly.
- Measuring: N(z), multi-lambda LF, stellar masses vs redshift, luminosity density (-> stellar mass density), clustering properties, cluster tomography and content, LSS.
- Operational aspects: low-Res SED & photometric redshifts; spectroscopic training and control set needed.

WIRCAM ULTRA DEEP FIELD (WUDF, ~0.11 deg2)

- Exploring the very high-z universe (z>~6). Constraining galaxy formation scenarios and reionisation history.
- Identification of high-z candidates through broad-band photometry (optical/near-IR dropouts; photometric redshifts) or NB+broad band.
- Operational aspects: photometric selection; subsequent spectroscopic follow up needed.

R. Pello/ WIRCAM Meeting IAP nov04

11/16/06

Photometric Redshifts:

ubgriz Photometry, Ultra-Deep Survey

Operational point of view

● CFHTLS Deep Survey lowresolution SED \rightarrow z_phot accuracy:

 $\sigma(z) \sim 0.1 (1+z)$

Without IR data, lack of strong signatures in the observed SED between 3500A and 9000A → higher errors z_phot at 1.2<z<2.2</p>

Filter	Expected integration time after 1 year	Limiting magnitude (AB)	Total integration time at the end of the survey	Limititing magnitude (AB)
u*	6.5 h	27.3	33h	28.2
g'	6.5 h	27.9	33h	28.8
r'	13h	27.7	66h	28.6
i'	26.5h	27.4	132h	28.3
z'	13h	26.1	66h	27.0

11/16/06

ugriz + JK'

• A reasonably deep IR survey will reduce th uncertainties to better than $\sigma z \sim 0.2$ at any redshift

The 4000A break span the near-IR domain at redshifts between 1.2 and 4.

The gain is also sensible for the determination of "spectral types" (early to late type galaxies, stargalaxy-qso discrimination).

R. Pello/ WIRCAM Meeting IAP nov04

11/16/06

N(z), Hubble diagrams, spectro_morphological types...

Near-IR/ multi-λ Luminosity Functions

Properties of galaxies versus environment

=0.600

...=4.410

« hypercube »

- Object: (, , P(z))
- «Local density » estimators
- Spectroscopic information for the "brightest" galaxies

Clusters and LSS tomography (see P. Hudelot's talk)

Number density maps

Z=0.694 +/- 0.03

Cl1054–1146 (VRIJK photometry)

Cl1054-1146 (VRI photometry)

Clusters and LSS tomography (II)

Number density maps

EDISCS Eso Distant Clusters Survey

Filters: VRIJK

Cl1037-1243 Z(spectro)=0.62 + 0.40

Z=0.40 -> 0.90 with dz=0.1

Cluster (low-z)	Zcluster	Z _{cluster}	Z _{spectro} - Z _{phot}
	spectro	z_{phot}	
cl1018-1211	0.472	0.450	0.022
cl1059-1253	0.455	0.465	-0.010
$cl1119-1129^{1}$	0.549	0.476	0.073
cl1202-1224	0.424	0.425	-0.001
cl1232-1250	0.542	0.549	-0.007
$cl1238-1144^{1}$	0.460	0.516	-0.056
cl1301-1139	0.482	0.483	-0.001
cl1353-1137	0.589	0.540	0.049
cl1411-1148	0.520	0.491	0.029
cl1420-1236	0.497	0.510	-0.013
Mean			0.008 ± 0.021
Cluster (high_z)		-	
Citables (ingh-z)	4cluster	Zcluster	Z _{spectro} - Zphot
Cruster (ingn-2)	² cluster spectro	Zcluster Zphot	Z _{spectro} - Zphot
cl1037-1243	² cluster spectro 0.580	Zcluster Zphot 0.637	Z _{spectro} - Z _{phot}
cl1037-1243 cl1040-1155	² cluster spectro 0.580 0.702	² cluster ² phot 0.637 0.699	Z _{spectro} - Z _{phot} -0.057 0.002
cl1037-1243 cl1040-1155 cl1054-1146	² cluster spectro 0.580 0.702 0.696	² cluster <i>zphot</i> 0.637 0.699 0.725	Z _{spectro} - Z _{phot} -0.057 0.002 -0.029
cl1037-1243 cl1040-1155 cl1054-1146 cl1054-1245	² cluster spectro 0.580 0.702 0.696 0.750	² cluster <i>z</i> phot 0.637 0.699 0.725 0.732	Z _{spectro} - Z _{phot} -0.057 0.002 -0.029 0.017
cl1037-1243 cl1040-1155 cl1054-1146 cl1054-1245 cl1103-1245	² cluster spectro 0.580 0.702 0.696 0.750 0.703	² cluster <i>2phot</i> 0.637 0.699 0.725 0.732 0.766	Z _{spectro} - Z _{phot} -0.057 0.002 -0.029 0.017 -0.063
cl1037-1243 cl1040-1155 cl1054-1146 cl1054-1245 cl1103-1245 cl1122-1136 ¹	² cluster spectro 0.580 0.702 0.696 0.750 0.703 0.640	² cluster ² phot 0.637 0.699 0.725 0.725 0.732 0.766 0.797	Z _{spectro} - Z _{phot} -0.057 0.002 -0.029 0.017 -0.063 -0.157
cl1037-1243 cl1040-1155 cl1054-1146 cl1054-1245 cl1103-1245 cl1103-1245 cl1122-1136 ¹ cl1138-1133 ¹	² cluster spectro 0.580 0.702 0.696 0.750 0.703 0.640 0.479	² cluster <i>Zphot</i> 0.637 0.699 0.725 0.732 0.766 0.797 0.650	Z _{spectro} - Z _{phot} -0.057 0.002 -0.029 0.017 -0.063 -0.157 -0.171
cl1037-1243 cl1040-1155 cl1054-1146 cl1054-1245 cl1103-1245 cl1122-1136 ¹ cl1138-1133 ¹ cl1216-1201	² cluster spectro 0.580 0.702 0.696 0.750 0.703 0.640 0.479 0.796	² cluster <i>Zphot</i> 0.637 0.699 0.725 0.732 0.766 0.797 0.650 0.743	Z _{spectro} - Z _{phot} -0.057 0.002 -0.029 0.017 -0.063 -0.157 -0.171 0.0526
cl1037-1243 cl1040-1155 cl1054-1146 cl1054-1245 cl1103-1245 cl1122-1136 ¹ cl1138-1133 ¹ cl1216-1201 cl1227-1138	² cluster spectro 0.580 0.702 0.696 0.750 0.703 0.640 0.479 0.796 0.635	Zcluster Zphot 0.637 0.699 0.725 0.732 0.766 0.797 0.650 0.743 0.704	Z _{spectro} - Z _{phot} -0.057 0.002 -0.029 0.017 -0.063 -0.157 -0.171 0.0526 -0.065
cl1037-1243 cl1040-1155 cl1054-1146 cl1054-1245 cl1103-1245 cl1122-1136 ¹ cl1138-1133 ¹ cl1216-1201 cl1227-1138 cl1354-1230	² cluster spectro 0.580 0.702 0.696 0.750 0.703 0.640 0.479 0.796 0.635 0.757	Zcluster Zphot 0.637 0.699 0.725 0.732 0.766 0.797 0.650 0.743 0.704 0.694	-0.057 0.002 -0.029 0.017 -0.063 -0.157 -0.171 0.0526 -0.065 0.063

Mapping the stellar mass assembly

Bolzonella et al. 2002

WDF: WIRCAM Deep Field one CFHTLS deep field 1°x1° (~10 WIRCAM fields 20'x20')

filter	AB	exp. tim	e (h) numb. of r	nights		
J	25.0		7.3	7.3		
H	24.5		9.5	9.5		
Ks		24.5	14.0		14.0	
	τοτ,	4 <i>L</i>	30.8 /field		30.8	

Seeing: 0.6" integration in 0.9" aperture S/N = 5

WUDF: Looking for galaxies at $z \ge 6$

Schaerer 2001,2003

11/4/04

Broad-Band Color Selection of z>~ 6 galaxies

Z~6 candidates Ex: Bouwens et al. 2003, z~6

Star formation density from "I-dropouts" - Candidates at z~6 selected on ACS/GTO HST fields Ex: Dickinson et al. 2003, z~6 candidates in the GOODS Survey

z_850<~26.5 number density < 1 candidate/arcmin2

Broad-Band Color Selection of z>~ 6 galaxies

11/4/04

Broad-Band magnitudes

11-

Photometric selection + spectroscopic follow up ~ 5-10 "good" candidates/cluster + secondary candidates Efficiency to be determined.

Number counts 30' x 30' field

11/4/04

Number counts 30' x 30' field

11/4/04

WUDF: WIRCAM Utra Deep Field 1 WIRCAM field 20'x20'

WUDF: minimum setting				
filter	AB	exp. time (h)	nights	
Υ	25.5	14.0		1.5
J	25.5	18.3		2.0
Н	25.0	23.8		2.6
Ks	25.0	35.2		3.9
TOTAL		91.3/field		
10.0				

Seeing: 0.6" integration in 0.9" aperture S/N = 5

WUDF: optimal setting				
filter	AB	nights		
Y	26.0	35.2	3.9	
J	26.0	45.9	5.1	
Н	25.5	59	.8	
6.6				
Ks	25.5	88.3	9.7	
TOTAL		229.2/field	l 25.3	

Spectroscopic redshifts needed (VVDS fields): D1, D2, D3 Multi-lambda surveys (XMM, Galex, ...) D2, D3 HST/ACS data --> morphology D3

Spectroscopic follow up in the near-IR with "new generation" spectrographs on 8-10m telescopes:

- (Stellar) mass-selected samples of galaxies at intermediate redshift ($z\sim$ 1-4).

- Exploring the z>6 universe.

Example:

10m GTC/ Canarias (Spain)