
Defectix user guide

A. BAILLARD for TERAPIX team (IAP)

May 16, 2005

Contents

1 Introduction 2
1.1 Subject . 2

2 Technical overview 3
2.1 Neural networks . 3
2.2 Simulations . 3
2.3 Training . 3
2.4 Mask creation . 4
2.5 Global process . 5
2.6 Future . 5

3 Installation 7
3.1 Retrieve . 7
3.2 Install . 7
3.3 Documentation . 7

4 How to use 9
4.1 Generalities . 9
4.2 Command line . 10
4.3 Configuration files . 13
4.4 Standard use . 13

5 Messages and errors 19
5.1 Output . 19
5.2 Error codes . 19

1

Chapter 1

Introduction

1.1 Subject

Defectix must identify large artifacts directly from pixel data because it must create masks as
pixel data as well. The main difficulty lies in the large scale range of defects. Compared to
”real-life” images, lightning and perspective effects are not relevant for the analysis of astro-
nomical data. For this reason machine learning is a simple and efficient approach. A supervised
system based on neural networks should be able to treat arbitrary defects without the need to
code any new detection algorithms. Our software deals with artifacts such as halos, diffraction
spikes, satellite trails and scattered light. Once the network has been trained, Defectix acts as
a non linear translation invariant filter.

This text corresponds to the documentation of defectix version 1.0.4.

2

Chapter 2

Technical overview

2.1 Neural networks

Neural networks used in Defectix are three layers Multi-Layer Perceptrons (MLP) as shown on
figure 1.

fig 1. Neuron and neural network

They are trained using rprop algorithm (M. Riedmiller and H. Braun), a fast batch back-
propagation method.

2.2 Simulations

Original images are first rebinned to better match the seeing. A background model is then
substracted. Defects are added with random positions, intensities and sizes. Corresponding
masks are created simultaneously. Only one simulator is coded yet for halos. Images are
dynamically compressed using the following function:

y(x) =
1

|x|
ln

(
1 +

x

σ

)
where σ is the standard deviation of the global background.

2.3 Training

Principal Component Analysis (PCA) is carried out on blocks of n x n pixels. Only the k first
components are used as inputs to the neural networks. Typically, n = 8 and k = 16 (among 64).

As shown on figure 2, the network is trained with:

3

• input: principal components of each block.

• output: value of the mask for the central pixel of the block.

fig 2. Data used for training

2.4 Mask creation

Images are analysed as blocks as for training. Blocks slide along the image to compute a mask
value for each pixel of the original image.

Figure 3 shows some results obtain with a real image.

fig 3. Left: original image. Right: computed mask

4

2.5 Global process

Figure 4 shows the global process followed by defectix.

fig 4. Global process

2.6 Future

Defectix is still being developed and improved.

• Provide realistic simulations of a wilder range of defects

• Optimize and parallel code

5

• Bug reports

6

Chapter 3

Installation

3.1 Retrieve

Tarballs of defectix are available on Terapix team website: http://terapix.iap.fr

3.2 Install

Defectix was created using autotools so it is easy to install.

Get into the directory where you downloaded the tarball defectix-X.Y.Z.tar.gz, where X.Y.Z
is the version. Type in:

$> tar xvzf defectix-X.Y.Z.tar.gz

The project is uncompressed in a directory called defectix-X.Y.Z. Type in:

$> cd defectix.X.Y.Z ; ./configure

Autotools will try to install defectix so you can compile the source. You need to have a
version of cfitsio library installed. If every thing works, just type in:

$> make

and defectix will be compiled in src subdirectory. If you want to make defectix available for
every users, log as root and type in:

$> make install

defectix will be install in /usr/local/bin and configuration files will be copied in /usr/local/defectix.

3.3 Documentation

If you have doxygen, you can create Defectix documentation by typing in:

7

$> cd dox ; doxygen doxconf

8

Chapter 4

How to use

4.1 Generalities

Defectix is invoked on command line. There are two ways to invoke defectix. The first one is
to type each option on the command line. The second, and more efficient, one is to set each
option in a configuration file and to choose this file on the command line.

The first options to know is -h or –help. Indeed, this option displays the list of available
options :

$> ./defectix –help

Usage: defectix -M <mode> {-C <name> | [options]}

-M, --mode <mode> specify the defectix mode to use :

halo

trail

training

computing

-C, --conf-file <name> specify the configuration file to load

when loaded, command line options are ignored

-I, --input-file <name> specify the MEF file to treat

-K, --mask-file <name> specify the MEF file for masks

-O, --output-file <name> specify the MEF file for output (if needed)

-L, --evec-file <name> specify the gsl_matrix_float for the KL-base

-N, --nn-file <name> specify the neural network

Options:

-d, --defaults display default options and exit

-h, --help display this help and exit

-V, --version display the version and exit

-v, --verbose display error messages

-S, --substract-bg <bool> ask for a background substraction on image

-D, --reduce-dynamic <bool> ask for a reduction of the image dynamic range

9

-r, --rebin-factor <value> specify a rebin factor for image loading

-b, --bloc-size <value> specify a size for PCA blocs

For ’trainer’ and ’computer’ mode only

-p, --nb-pc <value> specify the number of components to use

-t, --nb-vector <value> specicy the number of vectors used for training

-e, --energy-treshold <value> define a treshold for neural network convergence

-m, --max-iteration <value> define a maximum number of iterations for

neural network convergence

-x, --max-prior <value> define a maximum intensity value for priors

-n, --min-prior <value> define a minimum intensity value for priors

-l, --non-prior <value> define a part of blocs to use without priors

-s, --mask-treshold <value> define a treshold for mask creation

-E, --print-evec print eigen vectors of the PCA into files

-R, --print-rebuilt print the rebuilt image by the PCA into a file

For simulating modes only

-a, --adder-type <type> specify the defect adder type :

extension (nb-defect per extension)

mosaic (nb-defect on the whole mosaic)

-i, --intensity <value> specify the defect intensity as a divisor

-f, --nb-defect <value> specify the number of defects to add

Usage explains there are the two ways to use defectix. The first one is to set options on the
command line, every option being described in the section 4.2. This mode in invoked with -M
or –mode.

The second mode uses a configuration file chosen with -C or –conf-file option. Configuration
files are described in the section 4.3.

4.2 Command line

Command line mode
-M, –mode <mode> Choose the execution mode of defectix.mode can be halo, trail,

training or computing. Once a mode is chosen, complementary
options can be chosen. There is no default value.
halo and trail sets defectix to create simulated defects on an
image and to generate corresponding mask.
training sets defectix to create a KL-Base and train a neural
network using an image and the corresponding mask.
computing sets defectix to create a mask for an image accord-
ing to a KL-Base and a given neural network.

10

File management
-I, –input-file <name> Choose the input file. For each mode, it corresponds to the

image to treat and the file is never modified. There is no
default value.

-K, –mask-file <name> Choose the mask file. For simulating and computing modes,
the created mask is saved in this file. For the training mode,
the mask is loaded from this file. There is no default value.

-O, –output-file <name> Choose the ouput file. In fact, it is currently useless. There is
no default value.

-L, –evec-file <name> Choose the eigen vectors file, that is the KL-Base. For training
and computing modes. If the files exists and its format is cor-
rect, the KL-Base is loaded, else a new KL-Base is computed
and saved in this file. There is no default value.

Global options
-d, –defaults Display default options as in a configuration file and exit.

-h, –help Display an usage message and exit.

-V, –version Display defectix version and exit

-v, –verbose Set verbose mode to display C++ debug informations.

-S, –substract-bg <bool> Ask for background substraction on the input image. Default
value is true.

-D, –reduce-dynamic <bool> Ask for dynamic reduction on the input image. If both -S
and -D options are set to true, background substraction is
computed before dynamic reduction. Default value is true.

-r, –rebin-factor <value> Choose a rebin factor for the input image. If the factor is 1,
no rebin is computed. Else, rebin is done before background
substraction. Default value is 4.

-b, –bloc-size <value> Define the size of the blocks for the PCA. Resulting blocks
contain valuexvalue pixels. Default value is 8.

Training and computing
options
-p, –nb-pc <value> Specify the number of principal components from the KL-Base

to use. This value depends on the -b option because the KL-
Base dimension corresponds to the size of the blocs. Default
value is 32 because the default value of -b being 8, the KL-
Base contains 64 components.

11

-t, –nb-vector <value> Specify the number of vectors to use for training. Blocks are
randomly chosen in the input image to create a training set
for the network training. The bigger the set is, the better the
network should learn and the longer the training should be.
Default value is 500.000 but must be reduced if there is not
enough RAM on the computer.

-e, –energy-treshold <value> Define a treshold for neural network convergence. The energy
(or error) is computed at each training cycle. If the error is
lower than the chosen treshold, the network is considered to
be trained. Default value is 0.025.

-m, –max-iteration <value> Define a maximum number of iterations. This option is a
security to avoid an infinite convergence. Indeed, if the chosen
treshold (-e option) cannot be reached, the training will stop
if the energy value does not decrease during value successive
iterations. Default value is 200.

-E, –print-evec Save eigen vectors in the file given by -L option. If -E is not
set, the KL-Base is not saved, even if -L is chosen. By default,
the KL-Base is not saved.

-R, –print-rebuilt Save a rebuilt version of the original image in a file. Currently
not working.

-x, –max-prior <value> Define a maximum intensity value for priors. If a bloc is
brighter than max * value where max is the maximum in-
tensity of the image, it is NOT consider as a prior. Only prior
blocs are used for training.

-n, –min-prior <value> Define a minimum intensity value for priors. If a bloc is darker
than max * value where max is the maximum intensity of the
image, it is NOT consider as a prior. Only prior blocs are used
for training.

-l, –non-prior <value> Define a part of blocs to use without priors. If one wants to
use non prior blocs for training, it can specify a ratio. value *
100% of the blocs will not be prior blocs.

-s, –mask-treshold <value> Define a treshold for mask creation. If value is 2, no treshold
is apply and the result is a linear mask. If value is between 0
and 1, it is used as a treshold. Pixels brighter than value are
set to 1, else, they are set to 0;

Simulating options

12

-a, –adder-type <type> Specify the way to add defects. type can be extension or
mosaic. The default value is extension.
extension type add the number of defects given by -d option
on each extension of the mosaic.
mosaic type add the number of defects given by -d option on
the whole mosaic.

-i, –intensity <value> Choose the defect intensity as a divisor. The intensity of de-
fects are computed according to the maximum value of the
image. Indeed, the average intensity is the result of the divi-
sion of the maximum value by value. Default value is 200.

-d, –nb-defect <value> Choose the number of defects to add according to the type.
Default value is 5. The default values adds 5 defects on each
extension.

4.3 Configuration files

Configuration file mode
-C, –conf-file <name> Choose the configuration file.

Once a configuration file has been chosen on the command line using option -C, any other
option on the command line is not considered. Options must be set in the configuration file
using options long names. For example, the energy treshold is set typing:

ENERGY-TRESHOLD 0.001

Option -d or –defaults displays on standard output all that can be found in a configuration
file with usefull comments. Blank lines are authorised and any line starting with a # is treated
as a comment.

Considering cfitsio library, defectix respects some considerations regarding to file manage-
ment. Indeed, to overwrite a file, it is necessary to add a ! before the file name. For exam-
ple, /home/ab/mask/721548p.fits will not allow defectix to write or replace the file whereas
!/home/ab/mask/721548p.fits will.

4.4 Standard use

The standard use of defectix requires 3 configuration files.

The first is used for defects simulation. Indeed, simconf rebins the image, substracts the
background, adds defects and then reduces the dynamic of the image, including defects.

13

The second file is trainconf and is used to compute a KL-Base and to train the network.

The third file is computeconf and is used to create masks according to files obtained during
training. This last file is the most usefull. Indeed, defect simulation and training can be done
only once whereas computation is done for each image one wants to treat.

14

configuration file for defectix

use ’defectix -C’ or ’defectix --conf-file’

/!\ configuration file options cancel command line options

add # at the begin of a line to comment it

###################### following options are always used ######################

execution mode (’halo’, ’trail, ’training’ or ’computing’)

MODE halo

input file (no default, must be chosen)

do not forget ’!’ to create or overwrite a file

INPUT-FILE /home/nis/ab/src/718798p.fits

MASK-FILE !/home/nis/ab/simmask/718798p.simmask.fits

OUTPUT-FILE !/home/nis/ab/siminput/718798p.siminput.fits

rebin factor (default is 4)

#REBIN-FACTOR 8

ask for substraction of the background (default true)

#SUBSTRACT-BG false

reduce dynamic range of the image (default true)

#REDUCE-DYN false

############## following options are used for ’simulating’ mode ###############

defect adder type

extension = NB-DEFECTS per extension

mosaic = NB-DEFECTS on the whole mosaic

ADDER-TYPE extension

intensity of the defect compared to maximum (1 / INTENSITY) (default 200)

INTENSITY 800

number of defects to add corresponding to the defect adder type

NB-DEFECT 1

end of file

Figure 4.1: simconf, create simulated masks and simulated images

15

configuration file for defectix

use ’defectix -C’ or ’defectix --conf-file’

/!\ configuration file options cancel command line options

add # at the begin of a line to comment it

###################### following options are always used ######################

execution mode (’simulating’ ’training’ or ’computing’)

MODE training

display error messages (default no display)

VERBOSE

input file (no default, must be chosen)

INPUT-FILE /home/nis/ab/siminput/718798p.siminput.fits

MASK-FILE /home/nis/ab/simmask/718798p.simmask.fits

EVEC-FILE evec.mat.gsl

NN-FILE network.net

size of blocs for the PCA (default 8)

BLOC-SIZE 8

rebin factor (default is 4)

REBIN-FACTOR 1

ask for substraction of the background (default true)

SUBSTRACT-BG false

reduce dynamic range of the image (default true)

REDUCE-DYN false

############### following options are use for ’training’ mode #################

output results of the PCA in files (default does not output)

PRINT-EVEC

number of principal components to use after PCA (default 500000)

NB-VECTOR 400000

number of principal components to use after PCA (default 32)

NB-PC 16

energy treshold for training (default 0.025)

ENERGY-TRESHOLD 0.001

16

maximum number of iterations with the same error value for training

(default 200)

MAX-ITERATION 20

prior management for training

MAX-PRIOR 1

MIN-PRIOR 0.3

NON-PRIOR 0.5

end of file

Figure 4.2: trainconf, create a KL base and train a network

17

configuration file for defectix

use ’defectix -C’ or ’defectix --conf-file’

/!\ configuration file options cancel command line options

add # at the begin of a line to comment it

###################### following options are always used ######################

execution mode (’simulating’ ’training’ or ’computing’)

MODE computing

input file (no default, must be chosen)

do not forget ’!’ to create or overwrite a file

INPUT-FILE /home/nis/ab/src/718798p.fits

MASK-FILE !/home/nis/ab/mask/718798p.mask.fits

EVEC-FILE evec.mat.gsl

NN-FILE network.net

size of blocs for the PCA (default 8)

BLOC-SIZE 8

rebin factor (default is 4)

REBIN-FACTOR 8

ask for substraction of the background (default true)

#SUBSTRACT-BG false

reduce dynamic range of the image (default true)

#REDUCE-DYN false

############### following options are use for ’training’ mode #################

output results of the PCA in files (default does not output)

#PRINT-EVEC

number of principal components to use after PCA (default 32)

NB-PC 16

mask treshold for training (default 2 = no treshold)

MASK-TRESHOLD 0.8

end of file

Figure 4.3: computeconf; compute a mask for a given image

18

Chapter 5

Messages and errors

5.1 Output

There are three types of messages written by defectix :

• information messages, written with a green header. These messages indicates the steps
of the normal process.

• alert messages, written with a yellow header. These messages are printed when a option
was badly set so the default value is chosen.

• error messages, written with a red header. The messages result from an error during the
process. The program usually exits after such a message.

5.2 Error codes

Error messages are usually explicite but more information can be obtained using –verbose op-
tion.

0 NO ERROR no error.
1 NO EXTENSION try to use an extension not loaded.
2 MALLOC cannot allocate memory. Usually corresponds to a malloc() failure.
3 FITS cfitsio error occured. Usually, cfitsio error message is also printed.
4 NOT MEF file is not a standard MEF.
5 NOT IMGEXT extension is not an image.
6 NO EXT no extension at given position.
7 NO MASK no mask at given position.
8 WRONG BITPIX bitpix not supported.
9 MASK SIZE mask dimensions are different from image ones.
10 NOT ALLOC MAT matrix not allocated before use.
11 NOT ALLOC TABLE table not allocated before use.
12 NO KLBASE cannot load KL-base.

19

