

Anthony Baillard SCIA 2004

Automatic detection of defects on wide field images of deep space

Prerelease presentation

Traineeship supervisor: Emmanuel Bertin Team PI: Yannick Mellier

<u>Contents</u>

- · IAP and TERAPIX
- Scientific context
- Advanced techniques
- · Results
- \cdot Conclusion

IAP et TERAPIX

 \underline{I} nstitut d' \underline{A} strophysique de \underline{P} aris

- Fondamental research laboratory
- · Two units
 - UMR 7095, astrophysicists (INSU)
 - FRE 2435, theoretical physicists (CNRS)
- 4.2 millions euros annual budget
- · Staff
- 53 scientists
- 37 engineers, technicians and administrative staff
- 26 associated scientists
- 11 postdoctoral fellows
- 24 doctoral students
- 110 visitors a year

\cdot 160 publications a year

<u>TERAPIX</u>

- Traitement Elementaire, Reduction et Analyse des PIXels de megacam
- 5 engineers and 3 astronomers
- Main tasks:
 - to develop image processing and pipeline software for MegaCam;
 - to develop and provide tools for handling of large CCD images;
 - to operate the final reduction pipeline to produce calibrated images and catalogues of MegaCam images over the next 5 years;
 - to provide technical assistance and Terapix computing facilities to MegaCam users.

Anthony BAILLARD

TERAPIX tools

- · Snoopix
 - · Download via http or ftp
 - · 3.6Mb/s France/Canada
- · DataTransfer
 - · Cluster of 9 computers
 - · Dispatch data
 - Manage transfers
- · Spica

Snoopix

• Produce calibrated data

DataTransfer

· Web interface

· QualityFITS

- Image evaluation
- Webpages generation
- · Panorapix

Snoopix

FITS file visualisation

SCIA 2004

Anthony BAILLARD

Spica

Scientific context

<u>Scientific data</u>

- Canada-France-Hawaï Telescope Legacy Survey
 - · 3.6 meters telescope
 - wide field panoramic CCD camera, MegaCam
 - · 3 surveys
 - The CFHT-LS "shallow", 1300 square degrees, focused on the Trans-Neptunian and Kuiper Belt observations.
 - The CFHT-LS "wide", covering 170 square degrees, focused on large-scale structure of the Universe.
 - The CFHT-LS "deep", covering four uncorrelated 1 square degree patches (i.e., one MegaCam field) for detection of supernovae
- 50Tb of data over 5 years
- FITS and MEF formats (astrophysics)

Anthony BAILLARD

<u>Scientific goals</u>

- Photometry
 - · Measurement of the light intensities
- · Astrometry
 - \cdot measurement of the position and motion of celestial bodies
- Study of large-scale structure of the cosmos
- Study of the curvature of the universe

Optical defects

- \cdot Halos
- · Satellite Trails
- Diffraction
 spikes

Project aims

- Create masks of pixels corresponding to optical defects
- · Currently done manually
 - Increase treatment speed
 - Save astronomers time for more useful tasks

<u>Constraints</u>

Amounts of data

- 2112x4644 pixels on each CCD
- 36 CCD for each mosaic/image
- About 3.10⁸ pixels for each image
- Dimensionality reduction

Speed constraints: an image each 5 minutes

- About 1.10⁶ pixels per second
- Fast and robust method
- Autonomous computing
 - No human intervention during mask computation
 - Supervised learning machine
 - Defect simulator

Advanced techniques

Chosen solution

- FITS File management (cfitsio library)
- \cdot Dimensionality reduction
 - · Rebinning
 - Background substraction and dynamic reduction
 - · Principal Components Analysis
- Defect simulator
- Supervised machine learning
 - · Training
 - · Computing

<u>Rebinning</u>

p(0,0)	P(0,1)	p(0,j) p(0,N)
p(1,0)	p(1,1)	p(1.j) p(1.n)
p(i,0)	p(i,1)	p(i,j) p(i,N)
p(N,0)	p(N,1)	р(N,j) р(N,N)

- Reduction by NxN
- · Optional step

$$\frac{1}{NxN} \sum_{i=0}^{N} \sum_{j=0}^{N} p(i,j)$$

 $\mathbf{r}(0,0)$

Dynamic reduction

- Background computation and substraction
- Transfer function

$$z(y) = \frac{y}{|y|} \ln\left(1 + \frac{|y|}{?}\right)$$

<u>PCA</u>

Principal Components Analysis

Anthony BAILLARD

<u>Neural networks</u>

• Three layers MLP (Multi-Layer Perceptron)

Input and output

<u>Global process</u>

Estimations and speed

- Training
 - · Blocs: 8x8 pixels
 - · 352 152 blocs
 - · 16 PC

- · Computing
 - · Blocs: 8x8 pixels
 - · 22 068 288 blocs
 - · 16 PC
- · Quality
 - · Quadratic error: 0.027

	Simulating	Training	Computing	PCA
36 CCD (2112x4644) MEF file Halos	< 1 min	-	~4 min	~ 1 min
36 CCD (528x1161) MEF file Halos	-	~1 hour	~4 min	~ 1 min
36 CCD (2112x4644) MEF file Satellite trails	< 1 min	-	~4 min	~ 1 min
36 CCD (528x1161) MEF file Satellite Trails	-	~5 min	~4 min	~ 1 min

<u>Masks</u>

· Halo example

- · Rebin 4x4
- · 16 PC on 64
- · Network
 - 16 input nodes
 - 8 hidden nodes
 - 1 output node

Conclusion

· Todo list

- · Debug
- · Optimisation
- · Defects simulators
- Networks training and configuration (mostly)
- First release in July 2004

<u>Traineeship</u>

- Participation to a scientific conference
- Neural network successful application
- Personal improvment in astrophysics
- New techniques development
- Discover of a research laboratory
- · Complementary work
- Positive experience

• Thanks

- · Emmanuel Bertin
- · Yannick Mellier
- · Valérie Bona
- · TERAPIX team
- · IAP staff
- Websites
 - http://terapix.iap.fr
 - http://www.iap.fr
 - http://www.cfht.hawaii.edu/