

Spectrophotometry Working Group

main page

Mass estimations

Preliminary results

The spectrophotometric mass F. Lamareille, S. Charlot, T. Contini

The spectrophotometric mass is based on the **4000Å break**, the **Hdelta absorption indice** (measured with platefit on emission-line substracted spectra), together with **all available photometric bands**.

We use 500 000 population syntchis models from Bruzual & Charlot (2003). The spectral indices and observed-frame photometry (for each 0.1 redshift bins) are measured on each model spectrum, and fitted to the observed spectra with a Bayesian approach.

For each observed spectrum, we end up with a PDF (Probability Distribution Function) showing the likelihood of each physical parameter that defines a model: **stellar mass, age, star formation rate, dust**.

The parameter is estimated as the median of the PDF. The error is given by the 0.16 - 0.84 integrated likelihood interval.

Example of spectrum with the indices used.

The new HdW indice

The Lick HdA indice commonly used in the mass determination is too narrow for the the VVDS resolution. Thus, we have defined a broad indice, called Hd_W, giving the Hdelta absorption for low-resolution spectra.

The Hd_A and Hd_W are not linked on a y=x line, Hd_W includes more informations.

The results

Here we show the results obtained on the F02 field, with <u>flag 3 and 4</u> objects, and <u>0.4 < z < 1.4</u>.

Mass-to-ligth ratio

black: prior red: output distribution

Specific Star Formation Rate

black: prior red: output distribution

This is the mean SFR during the last 10⁸ years.

Comparaison between spectroscopic and photometric masses

We show the differences between the masses derived only with spectroscopic constraints, and only with photometric constraints.

$$12 \begin{bmatrix} rms = 0.44 \\ a = 1.04 \ b = -0.25 \\ <\sigma_{x} > = 0.19 \ <\sigma_{y} > = 0.09 \end{bmatrix} = 0.009] = 0.009$$

The two determinations are coherent (on the y=x line).

Better mean error with photometry (more constraints).

High dispersion.

The dispersion

(blue to black distributions).

Comparing the photo+spectro masses to the photo-alone masses:

The spectroscopic indices add more constraints: the mean error decreases.

The dispersion is low, but points with low error (black) can show non-neglictible shifts when adding spectroscopy.

Keep in mind: the use of the spectroscopy adds important constraints for estimating the star formation rate and is less sensitive to the dust.

Adding non-optical constraints

We have tested the effect of adding SWIRE data.

The specific star formation rate

Here we study the evolution of the specific star formation rate (in year^-1) with mass and redshift.

main page

2005, April 26th Fabrice Lamareille.