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AbstractOriented �lters are useful in many early vision and image processing tasks. One oftenneeds to apply the same �lter, rotated to di�erent angles under adaptive control, or wishesto calculate the �lter response at various orientations. We present an e�cient architectureto synthesize �lters of arbitrary orientations from linear combinations of basis �lters, al-lowing one to adaptively \steer" a �lter to any orientation, and to determine analyticallythe �lter output as a function of orientation.Steerable �lters may be designed in quadrature pairs to allow adaptive control overphase as well as orientation. We show how to design and steer the �lters, and presentexamples of their use in several tasks: the analysis of orientation and phase, angularlyadaptive �ltering, edge detection, and shape-from-shading. One can also build a self-similarsteerable pyramid representation which may be used to implement a steerable \wavelet"decomposition. The same concepts can be generalized to the design of 3-D steerable �lters,which should be useful in the analysis of image sequences and volumetric data.1 IntroductionOriented �lters are used in many vision and image processing tasks, such as texture analysis,edge detection, image data compression, motion analysis, and image enhancement. In manyof these tasks, it is useful to apply �lters of arbitrary orientation under adaptive control, andto examine the �lter output as a function of both orientation and phase. We will discusstechniques that allow synthesis of a �lter at arbitrary orientation and phase, and will developmethods to analyze the �lter outputs. We will also describe e�cient architectures for suchprocessing, develop 
exible design methods for the �lters in two and three dimensions, andapply the �lters to several tasks in image analysis. Preliminary reports of this work appear in[12, 13].One approach to �nding the response of a �lter at many orientations is to apply manyversions of the same �lter, each di�erent from the others by some small rotation in angle. Amore e�cient approach is to apply a few �lters corresponding to a few angles and interpolatebetween the responses. One then needs to know how many �lters are required and how toproperly interpolate between the responses. With the correct �lter set and the correct interpo-lation rule, it is possible to determine the response of a �lter of arbitrary orientation withoutexplicitly applying that �lter.We use the term \steerable �lter" to describe a class of �lters in which a �lter of arbitraryorientation is synthesized as a linear combination of a set of \basis �lters." We will show thatboth two and three-dimensional functions are steerable, and will show how many basis �ltersare needed to steer a given �lter. We �rst discuss the two-dimensional case.2



2 An ExampleAs an introductory example, consider the 2-dimensional, circularly symmetric Gaussian func-tion, G, written in Cartesian coordinates, x and y:G(x; y) = e�(x2+y2); (1)where scaling and normalization constants have been set to 1 for convenience. The directionalderivative operator is steerable as is well-known [8, 12, 16, 18, 21, 22, 23, 24, 27, 34]. Letus write the nth derivative of a Gaussian in the x direction as Gn. Let (: : :)� represent therotation operator, such that, for any function f(x; y), f �(x; y) is f(x; y) rotated through anangle � about the origin. The �rst x derivative of a Gaussian, G0�1 , isG0�1 = @@xe�(x2+y2) = �2xe�(x2+y2): (2)That same function, rotated 90 degrees, is:G90�1 = @@y e�(x2+y2) = �2ye�(x2+y2): (3)These functions are shown in Fig. 1(a) and (b). It is straightforward to show that a G1 �lter atan arbitrary orientation � can be synthesized by taking a linear combination of G0�1 and G90�1 :G�1 = cos(�)G0�1 + sin(�)G90�1 : (4)Since G0�1 and G90�1 span the set of G�1 �lters we call them basis �lters for G�1. The cos(�) andsin(�) terms are the corresponding interpolation functions for those basis �lters.Because convolution is a linear operation, we can synthesize an image �ltered at an arbitraryorientation by taking linear combinations of the images �ltered with G0�1 and G90�1 . Letting �represent convolution, if R0�1 = G01 � I (5)R90�1 = G901 � I (6)thenR�1 = cos(�)R0�1 + sin(�)R90�1 : (7)The derivative of Gaussian �lters o�er a simple illustration of steerability. In the nextsection, we generalize these results to encompass a wide variety of �lters. (See [36, 41] forrecent extensions of this approach.)3 Steering Theorems in Two DimensionsWe want to �nd the conditions under which any function, f(x; y), steers, i.e., when it can bewritten as a linear sum of rotated versions of itself.3



a b cd e f gFigure 1: Example of steerable �lters. (a) G0�1 , �rst derivative with respect to x (horizontal) of aGaussian. (b) G90�1 , which is G0�1 , rotated by 90�. From a linear combination of these two �lters,one can create G�1, an arbitrary rotation of the �rst derivative of a Gaussian. (c) G30�1 , formed by12G0�1 + p32 G90�1 . The same linear combinations used to synthesize G�1 from the basis �lters will alsosynthesize the response of an image to G�1 from the responses of the image to the basis �lters: (d) Imageof circular disk. (e) G0�1 (at a smaller scale than pictured above) convolved with the disk, (d). (f) G90�1convolved with (d). (g) G30�1 convolved with (d), obtained from 12 [image e] +p32 [image f].
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The steering constraint is f �(x; y) = MXj=1 kj(�)f �j (x; y): (8)We want to know what functions f(x; y) can satisfy Eq. (8), how many terms,M , are requiredin the sum, and what the interpolation functions, kj(�), are.We will work in polar coordinates r = px2 + y2 and � = arg(x; y). Let f be any functionwhich can be expanded in a Fourier series in polar angle, �:f(r; �) = NXn=�N an(r)ein�: (9)In Appendix A, we prove the following theorem:Theorem 1 The steering condition, Eq. (8), holds for functions expandable in the form ofEq. (9) if and only if the interpolation functions kj(�) are solutions of:0BBB@ 1ei�: : :eiN� 1CCCA = 0BBBB@ 1 1 : : : 1ei�1 ei�2 : : : ei�M... ... ... ...eiN�1 eiN�2 : : : eiN�M 1CCCCA0BBBB@ k1(�)k2(�)...kM(�) 1CCCCA : (10)If, for any n, an(r) = 0, then the corresponding (nth) row of the left hand side and of thematrix of the right hand side of Eq. (10) should be removed.We are interested in the minimum number of basis functions which are required to steera particular function, f(r; �). Let T be the number of positive or negative frequencies �N �n � N for which f(r; �) has non-zero coe�cients an(r) in a Fourier decomposition in polarangle. For example, cos(�) = ei�+e�i�2 has T = 2 and cos(�) + 1 = ei�+e�i�2 + e0 has T = 3.In Appendix B we derive the minimum number of basis �lters of any form which will steerf(r; �), i.e., for which the following equation holds:f �(r; �) = MXj=1 kj(�)gj(r; �); (11)where the gj(r; �) can be any set of functions. Theorem 2 gives the results:Theorem 2 Let T be the number of non-zero coe�cients an(r) for functions f(r; �) expandablein the form of Eq. (9). Then the minimum number of basis functions which are su�cient tosteer f(r; �) by Eq. (11) is T . I.e., M in Eq. (11) must be >= T .Using rotated versions of the function itself as the basis functions, as in Eq. (8), the Tbasis function orientations �j must be chosen so that the columns of the matrix in Eq. (10) are5



linearly independent. In practice, for reasons of symmetry and robustness against noise, wechoose basis functions spaced equally in angle between 0 and �. Note that the interpolationfunctions kj(�) do not depend on the values of the non-zero coe�cients an(r) in the Fourierangular decomposition of the �lter f(r; �).A 1-D bandlimited function can be represented by a �nite number of samples correspondingto the number of Fourier terms, which is the number of degrees of freedom. Theorems 1 and2 show that angularly bandlimited functions behave the same way.We illustrate the use of Theorem 1 by re-deriving the steering equation for G1. In polarcoordinates, the �rst derivative of a Gaussian isG0�1 (r; �) = �2re�r2 cos(�) = �re�r2(ei� + e�i�): (12)Since G0�1 (r; �) has two non-zero coe�cients in a Fourier decomposition in polar angle �,by Theorem 1, two basis functions su�ce to synthesize G�1. The interpolation functions arefound from Eq. (10), with all entries but the second row removed:� ei� � = � ei�1 ei�2 � k1(�)k2(�) ! : (13)If we pick one basis function to be oriented at �1 = 0� and the other at �2 = 90�, thenEq. (13) gives k1(�) = cos(�) and k2(�) = sin(�). Thus, Theorem 1 tells us that G�1 =P2j=1 kj(�)G�j1 = cos(�)G0�1 + sin(�)G90�1 , in agreement with Eq. (4).Figure 2 shows 1-D cross-sections of some steerable basis �lters, plotted as a function ofangle � at a constant radius. An arbitrary translation of any one curve can be written as alinear combination of the basis curves shown on the graph (rotation of the �lter correspondsto translation on these graphs). Figure 2 (a) shows the sinusoidal variation of 1-D slices of G0�1and G90�1 , plotted at a constant radius. In this case, the steering property is a re-statement ofthe fact that a linear combination of two sinusoids can synthesize a sinusoid of arbitrary phase.Figure 2(b) and (c) are 1-D cross-sections of steerable basis sets for functions with the azimuthaldistribution 0:25 cos(3�) + 0:75 cos(�) and 0:25 cos(3�)� 1:25 cos(�), respectively. Since eachfunction has non-zero Fourier coe�cients for two frequencies, by Theorem 1, four basis func-tions su�ce for steering. Because both functions contain sinusoids of the same frequencies(even though of di�erent amplitudes), they use the same kj(�) interpolation coe�cients.It is convenient to have a version of Theorem 1 for functions expressed as polynomials inCartesian coordinates x and y [12]. In Appendix C, we prove the following theorem:Theorem 3 Let f(x; y) = W (r)PN(x; y), where W (r) is an arbitrary windowing function andPN (x; y) is an Nth order polynomial in x and y, whose coe�cients may depend on r. Linearcombinations of 2N + 1 basis functions are su�cient to synthesize f(x; y) = W (r)PN (x; y)rotated to any angle. Eq. (10) gives the interpolation functions, kj(�). If PN (x; y) containsonly even [odd] order terms (terms xnym for n+m even [odd]), then N +1 basis functions aresu�cient, and Eq. (10) can be modi�ed to contain only the even [odd] numbered rows (countingfrom zero) of the left hand side column vector and the right hand side matrix.6
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Figure 2: Three sets of steerable basis functions, plotted as a function of azimuthal angle, �, at aconstant radius. An arbitrary angular o�set of each function (linear shift, as plotted here) can beobtained by a linear combination of the basis functions shown. (a) G1 steerable basis set. (b) four basisfunctions for 0:25 cos(3�)+0:75 cos(�); (c) four basis functions for 0:25 cos(3�)�1:25 cos(�). The sameinterpolation functions apply for (b) as for (c). 7



Theorem 3 allows steerable �lters to be designed by �tting the desired �lters with poly-nomials times rotationally symmetric window functions, which can be simpler than using aFourier series in polar coordinates. However, Theorem 3 is not guaranteed to �nd the mini-mum number of basis functions which can steer a �lter. Representing the function in a Fourierseries in angle makes explicit the minimum number of basis �lters required to steer it. In apolynomial representation, the polynomial order only indicates a number of basis functionssu�cient for steering. For example, consider the angularly symmetric function, x2 + y2, writ-ten in a polar representation as r2e0�. Theorem 2 would say that only one basis function isrequired to steer it; Theorem 3, which uses only the polynomial order, merely says that anumber of basis functions su�cient for steering is 2 + 1 = 3.The above theorems show that steerability is a property of a wide variety of functions,namely all functions which can be expressed as a Fourier series in angle, or in a polynomialexpansion in x and y times a radially symmetric window function. Derivatives of Gaussians ofall orders are steerable because each one is a polynomial (the Hermite polynomials [32]) timesa radially symmetric window function.Fig. 3 shows a general architecture for using steerable �lters. (cf. Koenderink and vanDoorn [22, 23, 24], who used such an architecture with derivatives of Gaussians, and Knutssonet al. [21] who used it with related �lters.) The front end consists of a bank of permanent,dedicated basis �lters, which always convolve the image as it comes in; their outputs aremultiplied by a set of gain masks, which apply the appropriate interpolation functions at eachposition and time. The �nal summation produces the adaptively �ltered image.An alternative approach to the steerable �lters presented here would be to project allrotations of a function onto a complete set of orthogonal basis functions, such as the Hermitefunctions, or the polynomials used in the facet model [16]. One could then steer the �lterby changing the expansion coe�cients. Such expansions allow 
exible control over the �lter,but for purposes of steering they generally require more basis functions than the minimumnumber given by Theorem 2. For example, 2N + 1 basis functions are su�cient to steerany Nth order polynomial, while a complete set of 2-D polynomial basis functions wouldrequire (N + 1)(N + 2)=2 basis functions (n + 1 basis functions for every order 0 � n �N). Furthermore, a general decomposition may require extra basis functions in order to �t arotationally symmetric component of the function, which requires no extra basis functions forsteering when using rotated versions of the function itself as basis functions.4 Designing Steerable FiltersAll functions which are bandlimited in angular frequency are steerable, given enough basis�lters. But in practice the most useful functions are those which require a small number ofbasis �lters.As an example, we will design a steerable quadrature pair based on the frequency responseof the second derivative of a Gaussian, G2. A pair of �lters is said to be in quadrature if they8
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have the same frequency response but di�er in phase by 90� (i.e. are Hilbert transforms ofeach other [4]). Such pairs allow for analyzing spectral strength independent of phase, andallow for synthesizing �lters of a given frequency response with arbitrary phase. They haveapplication in motion, texture, and orientation analysis [1, 3, 11, 17, 19, 31, 38]. Gaussianderivatives are useful functions for image analysis [22, 23, 24, 45] and a steerable quadraturepair of them would be useful for many vision tasks.First, we design a steerable basis set for the second derivative of a Gaussian, f(x; y) =G0�2 = (4x2 � 2)e�(x2+y2) . This is the product of a second order, even parity polynomialand a radially symmetric Gaussian window, so, by Theorem 3, three basis functions su�ce.Equation (10) for the interpolation functions, kj(�), becomes 1ei2� ! =  1 1 1ei2�1 ei2�2 ei2�3 !0B@ k1(�)k2(�)k3(�) 1CA : (14)Requiring that both the real and imaginary parts of Eq. (14) agree gives a system of threeequations. Solving the system, using �1 = 0�, �2 = 60�, �3 = 120�, yieldskj(�) = 13[1 + 2 cos(2(�� �j))]; (15)and we have G�2 = k1(�)G0�2 + k2(�)G60�2 + k3(�)G120�2 : (16)We can form an approximation to the Hilbert transform of G2 by �nding the least squares�t to a polynomial times a Gaussian. We found a satisfactory level of approximation (totalerror power was 1% of total signal power) using a 3rd order, odd parity polynomial, which issteerable by four basis functions. We refer to this approximation as H2. Its steering formulais given with that for several other polynomial orders in Appendix F.Figures 4 (a) and (b) show 1-D slices of G2 and H2. The quality of the �t of H2 to theHilbert transform of G2 is fairly good, as shown by the smooth, Gaussian-like energy function(G2)2+(H2)2, (c), and the closeness of the magnitudes of the Fourier spectra for each function,(d).The seven basis functions of G2 and H2 are su�cient to shift G2 arbitrarily in both phaseand orientation. Those seven basis functions, and the magnitudes of their Fourier transforms,are shown in Fig. 5. Tables (1) and (2) list several quadrature pairs, based on several ordersof derivatives of Gaussians and �ts to their Hilbert transforms.4.1 Designing Separable Steerable FiltersFor most steerable �lters, the basis �lters are not all x-y separable, which can present highcomputational costs. For machine vision applications, we would like to have only x-y separablebasis functions. 10
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Figure 4: (a) G2, 2nd derivative of Gaussian (in 1 dimension). (b) H2, �t of 3rd order polynomial(times Gaussian) to the Hilbert transform of (a). (c) energy measure: (G2)2 + (H2)2. (d) magnitudesof Fourier transforms of (a) and (b).
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(a) G2 Basis Set(b) G2 Amplitude Spectra(c) G2 X-Y Separable Basis Set(d) H2 Basis Set(e) H2 Amplitude Spectra(f) H2 X-Y Separable Basis SetFigure 5: G2 and H2 quadrature pair basis �lters (rows (a) and (d)). The �lters in rows (a) and (d) spanthe space of all rotations of their respective �lters.. G2 and H2 have the same amplitude spectra (rows(b) and (e)), but 90� shifted phase. Steerable G2 and H2 �lters can measure local orientation directionand strength, and the phase at any orientation. Rows (c) and (f) show equivalent x-y separable basisfunctions which can also synthesize all rotations of G2 and H2, respectively.12



We �rst note that for all functions f which can be written as a polynomial in x and y, thereis an x-y separable basis, although it may have many basis functions. Applying the rotationformula to each x and y term of the polynomial will result in a sum of products of powers ofx and y, with coe�cients which are functions of the rotation angle:f �(x; y) =Xl Xj klj(�)xlyj : (17)Each x and y product in the rotated polynomial can be thought of as an x-y separable basisfunction, with its coe�cient klj(�) the interpolation function.In many cases, however, there exists an x-y separable basis set which contains only theminimum number of basis �lters, yet spans the space of all rotations for the function of interest.Such a separable basis allows steerable �lters to be applied with high computational e�ciency.Rows (c) and (f) of �gure 5 show x-y separable basis sets for the G2 and H2 �lters. Tables 3,5, 7 and 9 give the functional forms and digital �lter values for x-y separable versions of theG2, H2, and G4 and H4 basis �lters. In Appendix D we derive the steering formulas for thesex-y separable functions and show how to �nd the separable basis functions.4.2 Discrete Space FiltersThe steering theorems have been derived for continuous functions, and one might be concernedthat new di�culties would arise when one worked with discretely sampled functions. But if acontinuous function is steerable, then a sampled version of it is steerable in exactly the samefashion, because the order of spatial sampling and steering are interchangable. The weightedsum of a set of spatially sampled basis functions is equivalent to the spatial sampling of theweighted sum of continuous basis functions. So one can obtain digital steerable �lters by simplysampling a continuous �lter. Spatially sampled versions are given for G2, H2, G4 and H4 inTables 3, 5, 7 and 9.Filters can also be designed in the frequency domain, where one may separate the radialand angular parts of the design [19]. Conventional �lter design techniques [25, 33] allow thedesign of a circularly symmetric 2-D �lter with a desired radial response. Then, one can imposeon that �lter the angular variation needed to make a steerable basis set by frequency sampling[25] (if the angular response is relatively smooth). Inverse transforming the frequency sampledresponse gives the �lter kernel.Fig. 6 shows an example of this. The �lter was designed to be part of a steerable, self-inverting pyramid image decomposition [41], described below. The constraints on the multi-scale decomposition lead to the radial frequency response shown in Fig. 6(a). We used thefrequency transformation method [25] to convert the 1-D �lter to a nearly angularly symmetric2-D �lter, Fig. 6 (b).Having selected a radial frequency band, we next divided the band into four orientedsubbands by imposing an angular variation of cos3(�), where � is azimuthal angle in frequency.This function has four angular frequencies (�3 and �1) and so, by Theorem 1, requires four13



basis functions to steer. We Fourier transformed the radially symmetric kernel, multiplied bythe four desired cos3(���j ) angular responses, and inverse transformed to obtain the basis �lterimpulse responses. Figure 6(c - f) shows the frequency amplitude responses of the resultingdigital steerable �lters.
a b

c d e fFigure 6: Frequency domain �lter response plots, illustrating design procedure for steerable digital�lter. (a) shows the particular desired radial frequency distribution. (b) shows the desired angularlysymmetric two-dimensional frequency response, obtained through frequency transformation. (b) wasmultiplied by the desired cos3(�� �j) angular frequency responses and inverse transformed to yield thesteerable basis set. The frequency responses of the resulting four steerable digital �lters are shown in(c - f).4.3 Steerable Pyramid for Multi-Scale DecompositionWe have also used the steerable �lters to form a multi-scale, self-inverting pyramid decompo-sition [41]. Applying each �lter of the decomposition once to the signal gives the transformcoe�cients; applying each �lter a second time (with �lter tap values re
ected about the origin)and adding the results reconstructs a low-passed version of the image. Because all of the �ltersof the pyramid are bandpass, a high-pass residue image must be added back in to reconstructthe original image (as with [43]) . To implement this decomposition, we designed the angularand radial components of the polar separable design so that the squares of the responses ofeach �lter added to unity in the frequency plane.14



Figure 7 shows the steerable pyramid representation. The four bandpass �lters at eachlevel of the pyramid form a steerable basis set. The pyramid basis �lters were oriented at0�, 45�, 90�, 135�, but the coe�cients for any �lter orientation can be found from a linearcombination of the four basis �lter outputs. When the basis �lters are applied again at eachlevel, the pyramid collapses back to a �ltered version of the original image with near-perfectagreement. The steerable pyramid image transform allows control over orientation analysisover all scales.The steerable pyramid is an image transform for which all of the basis functions are derivedby dilation, translation, and rotation of a single function, and therefore it may be consideredto be a wavelet transform [15, 26]. Most work on wavelet image decomposition has involveddiscrete orthogonal wavelets, in particular those known as quadrature mirror �lters (QMF's)[10, 26, 40, 42]. Pyramids made from QMF's and other wavelets can be extremely e�cient forimage coding applications. Such representations are usually built with x-y separable �lters ona rectangular lattice [2, 26, 44], which signi�cantly limits the quality of orientation tuning thatcan be achieved. Simoncelli and Adelson [2, 39] have devised QMF pyramids based on �ltersplaced on a hexagonal lattice; in addition to being orthogonal and self-similar, these pyramidshave good orientation tuning in all bands. However, the basis functions are not steerable,so the representation is not optimal for orientation analysis. Non-orthogonal pyramids withorientation tuning have been described by [9, 14, 28, 43].Unlike the pyramids based on QMF's, the steerable pyramid described here is signi�cantlyovercomplete: not counting the residual image, there are 513 times as many coe�cients in therepresentation as in the original image (113 times over-complete, as with the Laplacian pyramid[5], but for each of 4 orientations). The overcompleteness limits its e�ciency but increases itsconvenience for many image processing tasks. Although it is non-orthogonal, it is still self-inverting, meaning that the �lters used to build the pyramid representation are the same asthose used for reconstruction.5 ApplicationsSteerable �lters are useful for many tasks in early vision. We present four applications below|orientation and phase analysis, angularly adaptive �ltering, edge detection, and shape-from-shading.5.1 Analyzing Local OrientationOrientation analysis is an important task in early vision [18, 19, 21, 46]. Knutsson andGranlund [19] devised an elegant method for combining the outputs of quadrature pairs toextract a measure of orientation. We describe a related method which makes optimal use ofthe �lters designed in Section 4. We measure the orientation strength along a particular direc-tion, �, by the squared output of a quadrature pair of bandpass �lters steered to the angle �.We call this spectral power the \oriented energy", E(�).15



a FilteredInput Image g ReconstructedImage
b Bandpass FiltersSteerable Image Transformcde fFigure 7: Steerable image transform. (a) Low-pass �ltered original image. (b) Odd-phase analyzing�lters, oriented at 0�, 45�, 90�, 135�. These four �lters form a steerable basis set; any orientation of this�lter can be written as a linear combination of the basis �lters. (c) - (e) Steerable, bandpass coe�cientsin a multi-scale pyramid representation of (a). A linear combination of these transform coe�cients willsynthesize the transform coe�cient for analyzing �lters oriented at any angle. (f) Low-pass image. (g)Image reconstructed from the pyramid representation, showing near-perfect agreement with (a).16



Using the nth derivative of a Gaussian and its Hilbert transform as our bandpass �lters,we have: En(�) = [G�n]2 + [H�n]2: (18)Writing G�n and H�n as a sum of basis �lter outputs times interpolation functions, Eq. (18)simpli�es to a Fourier series in angle, where only even frequencies are present, because of thesquaring operation:En(�) = C1 + C2 cos(2�) + C3 sin(2�) + [higher order terms : : : ]: (19)We use the lowest frequency term to approximate the direction, �d and strength, S, of thedominant orientation (the orientation which maximizes En(�)),�d = arg[C2; C3]2 (20)S = qC22 + C23 : (21)This approximation is exact if there is only one orientation present locally.Figure 8 (b) shows an orientation map derived using this method, using G2 and H2 tomeasure E2(�). The line lengths are proportional to S, the contrast along that orientation.The measured orientations and strengths accurately re
ect the oriented structures of the inputimage. This measurement of orientation angle was made directly from the basis �lter outputs,without having to actually perform the steering operation. Table 11 lists C2 and C3 as functionsof the basis �lter outputs for x-y separable G2 and H2 basis �lter outputs.
a bFigure 8: (a) Original image of Einstein, (b) Orientation map of (a) made using the lowest order termsin a Fourier series expansion for the oriented energy as measured with G2 and H2. Table 11 gives theformulas for these terms. 17



5.1.1 Multiple OrientationsIn regions containing corners and transparent or overlapping objects there may be more thana single orientation present at a given location. A �lter such as G2 is unable to signal thepresence of two orientations at a point because of its limited angular resolution. For a higherresolution analysis of orientation, one may use a steerable �lter with a narrower frequencytuning, such as the fourth derivative of a Gaussian, G4. This approach allows the analysis ofmultiple oriented structures at a single point.The �lter taps and analytical form for the steerable quadrature �lter pair G4 and H4 aregiven in Appendix G. (H4 is the least squares �t of a 5th order polynomial times a Gaussianto the Hilbert transform of G4.)Figure 9 shows two test images, a vertical line, and a cross, and their oriented energyas a function of angle, measured at the center using a G4, H4 quadrature pair, plotted inboth Cartesian and polar coordinates. Note that the steerable �lters adequately describe themultiple orientations of the cross, as seen by the 
oret shape.Fig. 10 shows a test image, (a), and several measures of its oriented energy, using the G4,H4 quadrature pair. Fig. 10 (b) shows the DC component of oriented energy, the angularaverage of Eq. (18). Because we are using a quadrature pair, the energy measure respondsto both lines and edges. Fig. 10 (c) is a measure of orientation where only one orientation isallowed at each point, calculated from the lowest order Fourier terms of Eq. (18). No dominantorientation is detected at intersections of oriented structures. Fig. 10 (d) shows polar plotsof the oriented energy distribution for various points in the image. Note that this measurecaptures the multiple orientations present at intersections and corners, shown by the 
oretsthere. These measures could all be calculated by constructing a di�erent quadrature pair foreach orientation observed; however, using the steerable �lters greatly reduces the computationalload.Figure 11 shows a detail from a texture, and the corresponding polar orientation maps atevery pixel in the texture image, o�ering a rich description of the textural details. Note that
orets of one dominant orientation are separated from 
orets of another dominant orientationby 
orets where both orientations are present.5.2 Angularly Adaptive FilteringOne can remove noise and enhance oriented structures by angularly adaptive �ltering [21] .Steerable �lters o�er an e�cient method for such processing. (Martens [27] used the steerableproperties of derivatives of Gaussians for image enhancement.) Figure 12(a) shows a digitalcardiac angiogram. From the outputs of the G2 and H2 basis �lters, we found the dominantorientation direction at every point in the image, as described in Section 5.1. (In order tosuppress noise, we spatially blurred the Fourier coe�cients C2 and C3 used in Eq. (21)).We then took the appropriate combinations of the G2 basis �lter outputs, given by Eqs. (15)18
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a c e
b d fFigure 9: Test images of (a) vertical line and (b) intersecting lines. (c) and (d): Oriented energy as afunction of angle at the centers of test images (a) and (b). Oriented energy was measured using theG4, H4 quadrature steerable pair. (e) and (f): polar plots of (c) and (d).
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a b
c dFigure 10: Measures of orientation derived from G4 and H4 steerable �lter outputs. (a) Input imagefor orientation analysis (b) Angular average of oriented energy as measured by G4, H4 quadrature pair.This is an oriented features detector. (c) Conventional measure of orientation: dominant orientationplotted at each point. No dominant orientation is found at the line intersection or corners. (d) Orientedenergy as a function of angle, shown as a polar plot for a sampling of points in the image (a). Note themultiple orientations found at intersection points of lines or edges and at corners, shown by the 
oretsthere. 20



a b
c dFigure 11: (a) Texture image; (b) Polar plots of oriented energy of (a) at every fourth pixel. Eachplot is normalized by the average over all angles of the oriented energy. (c) Detail of (a) (zoomed andblurred); (d) Normalized polar plots showing oriented energy of (c) at every pixel.21



and (16), to adaptively steerG2 along the local direction of dominant orientation. No additional�ltering was required for this step. To enhance local contrast, we divided the �ltered image bya local average of its absolute value. The result, Fig. 12(b), highlights the oriented vascularstructures of the angiogram. The entire process of �nding the dominant orientation, steeringG2 along it, and deriving the enhanced image involved only a single pass of the image throughthe basis �lters. The result is much less noisy than the output of an isotropic �lter of the samefrequency passband, Fig. 12(c), contrast enhanced in the same manner.5.3 Contour DetectionFilters with orientation tuning are often used in the detection of lines and edges [6, 16]. Onefeature detector that has gained popularity is Canny's edge operator [6], which is optimizedto detect step edges; Canny's system can also be used with di�erent �lter choices to detectfeatures other than step edges.A �lter that is optimized for use with an edge will give spurious responses when applied tofeatures other than edges. For example, when the Canny edge �lter is applied to a line ratherthan an edge, it produces two extrema in its output rather than one, and each is displaced tothe side of the actual line position. On the other hand, if a �lter is optimized for detectinglines, it will give spurious responses with edges. Since natural images contain a mixture oflines, edges, and other contours, it is often desirable to �nd a contour detector that respondsappropriately to the various contour types. A linear �lter cannot serve this task, but a localenergy measure derived from quadrature pairs can serve it quite well. Morrone et al. [31, 30]have shown that local energy measures give peak response at points of constant phase as afunction of spatial frequency, and that they correspond to the points where human observerslocalize contours. Perona and Malik [37] have shown that energy measures are optimal withrespect to a variety of edge types. We have already described the extraction of local energymeasures with quadrature pairs of steerable �lters. We now wish to use steerable energymeasures to generate sparse image descriptions, and to compare the results with those of asystem such as Canny's.In making this comparison we must keep in mind that Canny's full scheme involves threestages: a �ltering stage, an initial decision stage, and a complex post-processing stage whichcleans up the candidate edges. The �lters are merely the front end to a considerable batteryof post-processing machinery. Therefore to make our comparison we removed Canny's �lteringstage and substituted the outputs of our steerable energy measures; we left the post-processingstages intact. We obtained Lisp code for the Canny edge detector from the MIT Arti�cialIntelligence Laboratory.For the contour detector, we use the G2 and H2 quadrature steerable basis set. We �rst �ndat every position the angle of dominant orientation, �d, by the angle of maximum response of thesteerable quadrature pair, as described in Section 5.1. We then �nd the squared magnitude ofthe quadrature pair �lter response, steered everywhere in the direction of dominant orientation,E2(�d) = [G�d2 ]2+ [H�d2 ]2. A given point, (x0, y0), is a potential contour point if E2(�d) is at a22



a Original
b AdaptivelySteeredOrientedFiltering
c IsotropicFilteringFigure 12: (a) Digital cardiac angiogram. (b) Result of �ltering (a) with G2 oriented along the localdirection of dominant orientation, after local contrast enhancement (division by the image's blurredabsolute value). The oriented vascular structures of (a) are enhanced. (c) Isotropic, bandpass �lteringof (a), after local contrast enhancement. Note the increased noise relative to the oriented �lteringresults. 23



local maximum in the direction perpendicular to the local orientation, �d. The local maximapoints are then thresholded with hysteresis as in the Canny method, using the values of E2(�d)as the basis of thresholding, instead of the gradient magnitude.Figure 13 (a) shows a test image consisting of a �lled circle and an open square. Theresponse of the Canny edge detector is shown in Fig. 13 (b). It correctly �nds the edges of thecircle, but signals double edges on either side of the lines de�ning the square. Figure 13 (c)shows the output using the steerable quadrature pair. The new detector responds with a singlevalue correctly centered on both the circle and the square, giving a cleaner, sparser descriptionof the same information.Because the responses of G2 and H2 indicate the local phase, we can use them to furtherclassify contours as edges, dark lines, or light lines. Steering G2 and H2 along the dominantorientation gives the phase, ', of contour points:' = arg[G�d2 ; H�d2 ]: (22)To preferentially pick-out lines or edges, we scaled the energy magnitude, E2(�d) by a phasepreference factor, �('),�(') = ( cos2('� '�) if ��2 � '� '� � �20 otherwise ; (23)where '� = 8><>: 0 for dark lines� for light lines��2 for edges : (24)The thresholding stage proceeds as before. Figure 13 shows the result of such processing,selecting for dark lines, (d), and edges, (e). (The blobs on the square are due to multipleorientations at a single point, and could be removed by a post-processing thinning operator.)5.4 Shape-From-Shading AnalysisPentland [35] has observed that in many situations, the re
ectance function of a surface isapproximately linear, and that under those conditions, the Fourier transform of the rangeimage, Ẑ(f; �), is related to the Fourier transform of the intensity image, Î(f; �), by a lineartransformation involving a change of phase, and scaling according to frequency,Ẑ(f; �) = 12�fx0 e�i�2 Î(f; �); (25)where fx0 is the x0 component of frequency, and x0 points toward the illuminant. Under thesecircumstances, shape-from-shading analysis can be performed by a �ltering operation, whichPentland implemented in the Fourier domain. He also pointed out that a local approximationof the same procedure could be accomplished with Gabor-like �lters.We can describe such a shape-from-shading analysis as follows: The surface of interest,Z(x; y), is considered as a sum of elementary wavelets, which we may call "bumplets," bj(x; y).24



a
b c
d eFigure 13: (a) Circle and square test image. (b) Output of Canny edge detector. The edges of thecircle are accurately tracked, but the lines of the square are marked as two edges, neither at the correctposition. (c) Output of steerable �lter contour detector. Both edges and lines are marked as singlecontours, centered on the image feature. (d) Dark lines found by combining the contour detector witha phase estimator. (e) Edges found by combining the contour detector with a phase estimator.25



The shading process transforms these bumplets into a new set of elementary wavelets which wemay call "shadelets". Each bumplet is related to its shadelet according to the transformationof Eq. (25): bj(x; y)! sj(x; y). Since this shading process is linear, superposition holds and itis simple to transform back from the observed intensity image to the underlying range image.One simply decomposes the intensity image, I(x; y), into the shadelet coe�cients, aj :I(x; y) =Xj ajsj(x; y); (26)then uses these coe�cients to reconstruct the surface of interest with the bumplet basis set:Z(x; y) =Xj ajbj(x; y): (27)The steerable pyramid described above o�ers a convenient method for implementing this.The steerable �lters of Fig. 7 are the shadelets. Their steerable quadrature pair mates, scaledaccording to Eq. (25), approximate the corresponding bumplets. Because the steerable pyramidtransform is self-inverting, applying the shadelet �lters gives the coe�cients aj . Steerabilityallows one to easily accomodate di�erent lighting directions, which determines what bumpletcorresponds to each shadelet. Figure 14 shows the shape-from-shading algorithm applied usingthe pyramid decomposition illustrated in Fig. 7. The range image successfully captures thebasic characteristics of the object relief.6 Three-Dimensional Steerable FiltersVolumetric spatial data and temporal image sequences require three-dimensional processing.As with two dimensional data, the ability to adaptively orient �lters has many applications(e.g., [20]). For temporal sequences of images, orientation in space-time corresponds to velocity[1], so we expect that steerable �lters will be useful in motion analysis.In three dimensions, the steering equation we wish to solve is:fR(x; y; z) = MXj=1 kj(R)fRj(x; y; z); (28)where fR(x; y; z) is f(x; y; z) after application of a 3-dimensional rotation, R, and each Rjidenti�es the orientation of the jth basis function.In two dimensions, the number of basis �lters required depended on the number of di�erentsinusoids present in an angular Fourier decomposition of the function. In three dimensions, wecan make the analogous expansion in a series of spherical harmonics. The spherical harmonics,Y ml , form a complete, orthonormal basis set for functions on a sphere [7, 29] and are widelyused in quantum mechanics (they are the eigenfunctions of the angular momentum operator).Rotation formulas for spherical harmonics [7] show that a linear combination of the 2l + 1spherical harmonics of order l can synthesize an arbitrary rotation of any spherical harmonicY ml . 26



As in the two-dimensional case, it is convenient to develop steering formulas for functionswhich are written as polynomials times windowing functions. Of special interest as �lters arefunctions which have an axis of rotational symmetry. These functions, rotated by a transfor-mation R to have their axis of symmetry point along the direction cosines �, �, and 
, can bewritten as: fR(x; y; z) = W (r)PN(x0); (29)where W (r) is any spherically symmetric function, r = px2 + y2 + z2, and PN (x0) is an Nthorder polynomial in x0 = �x+ �y + 
z: (30)After substituting the functional form Eq. (29) into the three-dimensional steering equation,Eq. (28), one can derive the following steering theorem for axially symmetric functions writtenas polynomials times spherically symmetric window functions (see Appendix E for proof):Theorem 4 Given a three dimensional axially symmetric function f(x; y; z) = W (r)PN(x),where PN (x) is an even or odd symmetry N th order polynomial in x. Let �, �, and 
 be thedirection cosines of the axis of symmetry of fR(x; y; z) and �j, �j, and 
j be the directioncosines of the axis of symmetry of fRj (x; y; z). Then the steering equation,fR(x; y; z) = MXj=1 kj(�; �; 
)fRj(x; y; z); (31)holds if and only if(a) M � (N + 1)(N + 2)=2 and(b) the kj(�; �; 
) satisfy0BBBBBBBBB@ �N�N�1��N�1
�N�2�2...
N 1CCCCCCCCCA = 0BBBBBBBBB@ �N1 �N2 : : : �NM�N�11 �1 �N�12 �2 : : : �N�1M �M�N�11 
1 �N�12 
2 : : : �N�1M 
M�N�21 �21 �N�12 �22 : : : �N�1M �2M... ... ... ...
N1 
N2 : : : 
NM 1CCCCCCCCCA0BBBBBB@ k1(�; �; 
)k2(�; �; 
)k3(�; �; 
): : :kM(�; �; 
) 1CCCCCCA : (32)By adding the number of basis functions su�cient for steering even and odd symmetrypolynomials, it follows from Theorem 4 that (N +1)2 basis functions are su�cient for steeringfunctions f(x; y; z) = W (r)PN(x), where PN(x) is a general Nth order polynomial. Theorem 4permits one to design and steer arbitrary axially symmetric 3-dimensional �lters. For example,one can design 3-dimensional versions of the second derivative of a Gaussian, G2 and a thirdorder polynomial least squares �t to its Hilbert transform, H2. Since G2 can be written as asecond order, even parity polynomial times a Gaussian window function, by Theorem 4, sixbasis functions su�ce for steering it in three-dimensions. Ten basis functions will steer H2.27



Three-dimensional �ltering can be computationally intensive. For non-separable kernels,the computational cost grows as the cube of the kernel size. For separable kernels, however,the cost grows only linearly with kernel size. Thus, it is important to develop x-y-z separablesteerable �lters. The spherically symmetric Gaussian function can be written as a productof functions of x, y, and z. If the weighting function, W (r), is a Gaussian, then functionsfR(x; y; z) of the form of Eq. (29) can be written as a sum of separable basis functions bysubstituting Eq. (30) for x0 in Eq. (29).7 SummarySteerable �lters can be used for a variety of operations involving oriented �lters. The oriented�lter, rotated to an arbitrary angle, is formed as a linear combination of basis �lters. Oncethe basis �lter responses are known, the response of the �lter steered (rotated) to an arbitraryangle, can easily be found. A similar technique can be used to control the phase of the �lters.We have shown that most �lters can be steered in this manner, given enough basis �lters, andhave described how to determine the minimum number of basis functions required, and howto interpolate between them in angle.Steerable �lters may be applied to many problems in early vision and image analysis.Because the synthesis of the rotated �lter is analytic and exact, steerable �lters o�er advantagesfor image analysis over ad hoc methods of combining oriented �lters at di�erent orientations.We have designed steerable quadrature pair �lters, and have used them to analyze orien-tation, adaptively �lter to enhance oriented structures, and detect contours. These processingschemes require no additional convolution after the initial pass through the basis �lters. Thecontour detector utilizes quadrature pairs to mark both lines and edges with a single responseand can be used to further categorize the contours as either dark lines, light lines, or edges.One can also build a self-similar steerable pyramid representation which may be consid-ered to be a steerable wavelet transform, allowing the analysis and manipulation of orientedstructures at all scales. The steerable pyramid can be used for local linear shape-from-shadinganalysis; the steering property accomodates lighting orientation.Steering generalizes to three dimensions, and we give formulas for steering arbitrary rota-tionally symmetric functions. Basis functions can be separable in x-y-z, giving a tremendouscomputational advantage for large oriented �lters. These 3-D �lters should �nd application inmotion analysis and the analysis of volumetric data.8 AcknowledgementsThe authors had helpful conversations with Jim Bergen, Dave Heeger, Jan Koenderink, Je�Lubin, Alex Pentland, Rosalind Picard, and Eero Simoncelli. We thank Paul Granfors of G.E. Medical Systems (Milwaukee) for providing the digital cardiac angiogram of Fig. 12(a). We28
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(a) Original Image (b) Low-resolution plot of range data(c) Full-resolution range map
Figure 14: (a) Image input for linear shape-from-shading analysis using steerable image transform.(Steering was used to accomodate di�erent light directions). (b) Resulting range map, displayed as alow-resolution 3-D plot. (c) Same range map, with pixel intensity showing surface height. This simplemechanism, using biologically plausible �lters, correctly derived the image surface characteristics.30
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A Proof of Theorem 1Substituting the expansion for f(r; �), Eq. (9), into the steering constraint, Eq. (8), and pro-jecting both sides onto the complex exponential eim�, for �N � m � N , gives a set ofsimultaneous linear equations:am(r)eim� = MXj=1kj(�)am(r)eim�j , �N � m � N: (33)If am(r) = 0 for some m, then we can remove that constraint from the set, otherwise, divideboth sides by am(r). The constraints above are the same for �m as for m, so without lossof generality we can consider only positive frequencies 0 � m � N in Eq. (33). This givesEq. (10) of Theorem 1. One can also start from Eq. (33) and derive the steering conditionfrom it, showing that the conclusion of the theorem holds if and only if the premises hold.B Proof of Theorem 2We want to �nd the minimum number of basis �lters which can span all rotations of a given�lter, f(r; �). Let gj(r; �), 0 � j � M be any set of M basis functions. We want to �ndthe minimum number M for which Eq. (11) holds. Using the expansion for f(r; �), Eq. (9),projecting both sides of Eq. (11) onto eim�, and dividing by am(r) 6= 0 gives the followingconstraints: eim� = MXj=1 kj(�)cjm(r) , 0 � m � N; (34)where cjm(r) is a�1m (r) times the projection of the basis function gj(r; �) onto e�im�.Substituting Eq. (34) into the orthonormality relation for complex exponentials, we canwrite the following matrix equation, I = CKCt; (35)where I is a T by T identity matrix; C is a T by M matrix having elements clj(r); K is M byM , with elements 12� R ��� kl(�)kj(�) d�; Ct is C transpose; and T is the number of positive ornegative frequencies m for which am(r) 6= 0. Since I has rank T , then K must have rank atleast T , and so for steering we must have M � T , as desired.C Proof of Theorem 3Consider the term xkyn�k , where 0 � k � n. This can be re-written in polar coordinates usingx = r cos(�) and y = r sin(�): xkyn�k = rn cos(�)k sin(�)n�k: (36)34



It can be shown that this product of powers of sines and cosines, written as a Fourier series,can contain only the frequencies n�, (n � 2)�, : : :, �(n � 2)�, �n�. Thus, an Nth orderpolynomial containing only even order terms could only have even angular frequencies m for�N � m � N . By Theorem 1, it would require at most N + 1 basis functions for steering.Similarly, N +1 basis functions su�ce for a polynomial with only odd parity terms. A generalNth order polynomial could contain all angular frequencies of absolute value less than or equalto N and would need at most 2N + 1 basis functions to steer .D Basis Functions Separable in x and yWe show how to �nd the steering formulas and x-y separable basis functions for some poly-nomial �lters. We consider only the case of even or odd parity �lters f �(x; y) which can bewritten as f �(x; y) = G(r)QN(x0): (37)where G(r) is a Gaussian function (and therefore x-y separable) and QN(x0) is an Nth orderpolynomial in x0 = x cos(�)� y sin(�): (38)By Theorem 3, N + 1 functions can form a basis set for f �(x; y). We assume that a basisset of N + 1 x-y separable �lters exists (that is not true for all functions). Then there will besome set of separable basis functions Rj(x)Sj(y) for whichf �(x; y) = G(r) NXj=0 kj(�)Rj(x)Sj(y): (39)We can �nd the interpolation functions, kj(�), by equating the highest order products of xand y in Eq. (37) with those of Eq. (39), ie., equating the coe�cients of x(N�j)yj for 0 � j � N .Substituting Eq. (38) into Eq. (37), the (x0)N term in f �(x; y) will give rise to N + 1 di�erentproducts of x and y of order N , since(x0)N = NXj=0(�1)j  Nj ! cos(N�j)(�) sinj(�)[x(N�j)yj ]: (40)Each basis function Rj(x)Sj(y) can contribute only one product of powers of x and y of orderN (otherwise Rj(x)Sj(y) would be a polynomial in x and y of order higher than N). So wemust have Rj(x)Sj(y) = c(x(N�j) + : : :)(yj + : : :); (41)where c is a constant. Therefore Eq. (39) shows that the coe�cient of the highest order terms,x(N�j)yj , in f �(x; y) is kj(�). (The lower order terms can appear in more than one separablebasis function, so their coe�cients will be a sum of di�erent kj(�).) Using Eq. (40) in Eq. (37)gives those same coe�cients in terms of sines and cosines. Equating the two giveskj(�) = (�1)j  Nj ! cos(N�j)(�) sinj(�): (42)35



To �nd the separable basis functions Rj(x)Sj(y) from the original �lter f(x; y), we notethat from the steering equation for the separable basis functions, Eq. (39), we have0BBB@ f �1(x; y)f �2(x; y): : :f �N (x; y) 1CCCA = G(r)0BBBB@ k1(�1) k2(�1) : : : kN(�1)k1(�2) k2(�2) : : : kN(�2)... ... ... ...k1(�N ) k2(�N ) : : : kN(�N) 1CCCCA0BBBB@ R1(x)S1(y)R2(x)S2(y)...RN(x)SN(y) 1CCCCA : (43)The Rj(x)Sj(y) can be written as a linear combination of the f �j (x; y) by inverting the matrixof k:(�:)'s on the right-hand side of Eq. (43).E Proof of Theorem 4First, equating only the highest order terms of Eq. (31) (after dividing both sides by W (r)),we have (�x+ �y + 
z)N = MXj=1 kj(�jx+ �jy + 
jz)N : (44)Expanding the Nth power of the sums on both sides, and equating like powers of x, y, and zgives the constraints of Eq. (32).The constraint equations resulting from any lower order polynomial terms of fR and fRjin Eq. (31) will turn out to be linearly dependent on the constraints of Eq. (32). This can beseen as follows. Consider the coe�cients of xpyqzr in Eq. (31), for p + q + r < N . Dividingout common factors, we have �p�q
r = MXj=1 kj�pj�qj
rj : (45)Because PN (x0) is assumed to have even or odd symmetry, then powers of x0 can di�er onlyby even integers. Consider coe�cients resulting from terms in Eq. (31) of order p+ q + r + 2.There will be at least the following three equations:�p+2�q
r = MXj=1 kj�p+2j �qj
rj (46)�p�q+2
r = MXj=1 kj�pj�q+2j 
rj (47)�p�q
r+2 = MXj=1 kj�pj�qj
r+2j : (48)Now utilize the fact that the sum of the squares of direction cosines is one: substituting�2 = 1� �2� 
2 and �2j = 1� �2j � 
2j into Eq. (46), and adding Eqs. (47) and (48) to it givesEq. (45). Thus, every constraint equation resulting from terms of polynomial order n is linearlydependent on the constraint equations from the polynomial order n + 2. So if the constraints36



of the highest order terms, Eq. (32), are satis�ed, and the polynomial PN (x0) contains termsof only even or odd order, then Eq. (31) holds. Because there are (N +1)(N +2)=2 constraintequations in Eq. (32), we must have M � (N + 1)(N + 2)=2. One can proceed from Eq. (32)back to Eq. (31), and so the theorem conclusions hold if and only if the premises hold.
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F Formulas for Steering Even or Odd Parity PolynomialsPolynomial Steering EquationOrder1 kj(�) = 12 [2 cos(� � �j)]2 kj(�) = 13 [1 + 2 cos(2(� � �j))]3 kj(�) = 14 [2 cos(� � �j) + 2 cos(3(� � �j))]4 kj(�) = 15 [1 + 2 cos(2(� � �j)) + 2 cos(4(� � �j))]5 kj(�) = 16 [2 cos(� � �j) + 2 cos(3(� � �j)) + 2 cos(5(� � �j))]Table 1: Interpolation functions kj(�) in Eq. (8) needed to synthesize f�(x; y) from the basis functionsf�j (x; y), where f(x; y) is a polynomial in x and y (times any window function W (r)) with only evenor odd parity terms. The orientations of the n + 1 basis functions were assumed to be evenly spacedbetween 0 and �, i.e. �j = j�=(n + 1), where j = 0, 1,: : :n. Under those conditions, the patternapparent in the terms above continues to all polynomial orders.G Steerable Quadrature Filter PairsG2 H2 G3 H3 G4 H4Figure 15: Three steerable quadrature �lter pairs, listed in Table 2.G2 = 0:9213(2x2� 1)e�(x2+y2)H2 = (�2:205x+ 0:9780x3)e�(x2+y2)G3 = (2:472x� 1:648x3)e�(x2+y2)H3 = (�0:9454 + 2:959x2 � 0:6582x4)e�(x2+y2)G4 = (0:9344� 3:738x2+ 1:246x4)e�(x2+y2)H4 = (2:858x� 2:982x3+ 0:3975x5)e�(x2+y2)Table 2: Several Gaussian derivatives and polynomial �ts to their Hilbert transforms (transforms andderivatives taken along x axis). The listed functions are normalized so that the integral over all spaceof their square equals one. To steer each of these, use Eq. (8) and the appropriate kj(�) from Table 1.
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H X-Y Separable, Steerable Quadrature Pair Basis FiltersG2a G2b G2cFigure 16: X-Y separable basis �lters for G2, listed in Tables 3 and 4.G2a = 0:9213(2x2� 1)e�(x2+y2)G2b = 1:843xye�(x2+y2)G2c = 0:9213(2y2� 1)e�(x2+y2) ka(�) = cos2(�)kb(�) = �2 cos(�) sin(�)kc(�) = sin2(�)Table 3: X-Y separable basis set and interpolation functions for second derivative of Gaussian. Tocreate a second derivative of a Gaussian rotated along to an angle �, use: G�2 = (ka(�) G2a + kb(�) G2b+ kc(�) G2c). The minus sign in kb(�) selects the direction of positive � to be counter-clockwise.tap # f1 f2 f30 -0.9213 1.0 0.01 -0.0601 0.6383 0.58062 0.3964 0.1660 0.30203 0.1148 0.0176 0.04804 0.0094 0.0008 0.0028 G2 basis �lter �lter in x �lter in yG2a f1 f2G2b f3 f3G2c f2 f1Table 4: 9-tap �lters for x-y separable basis set for G2. Filters f1 and f2 have even symmetry; f3 has oddsymmetry. These �lters were taken from Table 3, with a sample spacing of 0.67. Use the interpolationfunctions of Table 3.
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H2a H2b H2c H2dFigure 17: X-Y separable basis �lters for H2, listed in Tables 5 and 6.H2a = 0:9780(�2:254x+ x3)e�(x2+y2)H2b = 0:9780(�:7515+ x2)(y)e�(x2+y2)H2c = 0:9780(�:7515+ y2)(x)e�(x2+y2)H2d = 0:9780(�2:254y+ y3)e�(x2+y2) ka(�) = cos3(�)kb(�) = �3 cos2(�) sin(�)kc(�) = 3 cos(�) sin2(�)kd(�) = � sin3(�)Table 5: H2 basis set: x-y separable basis set and interpolation functions for �t to Hilbert transform ofsecond derivative of Gaussian. To synthesize a �lter oriented along direction �, use: H�2 = (ka(�)H2a +kb(�)H2b + kc(�)H2c + kd(�)H2d). The distance between �lter taps should be the same as that usedwith the quadrature pair derivative of Gaussian �lter.tap # f1 f2 f3 f40 0.0 1.0 0.0 -0.73491 -0.7551 0.6383 0.4277 -0.18892 -0.0998 0.1660 0.2225 0.16953 0.0618 0.0176 0.0354 0.05664 0.0098 0.0008 0.0020 0.0048 H2 basis �lter �lter in x �lter in yH2a f1 f2H2b f4 f3H2c f3 f4H2d f2 f1Table 6: 9-tap �lters for x-y separable basis set for H2. Filters for which tap 0 is 0.0 have oddsymmetry about tap 0; the others have even symmetry. These �lters were taken from Table 5, with asample spacing of 0.67. Use the interpolation functions of Table 5.
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G4a G4b G4c G4d G4eFigure 18: X-Y separable basis �lters for G4, listed in Tables 7 and 8.G4a = 1:246(0:75� 3x2 + x4)e�(x2+y2)G4b = 1:246(�1:5x+ x3)(y)e�(x2+y2)G4c = 1:246(x2� 0:5)(y2� 0:5)e�(x2+y2)G4d = 1:246(�1:5y+ y3)(x)e�(x2+y2)G4e = 1:246(0:75� 3y2 + y4)e�(x2+y2) ka(�) = cos4(�)kb(�) = �4 cos3(�) sin(�)kc(�) = 6 cos2 sin2(�)kd(�) = �4 cos(�) sin3(�)ke(�) = sin4(�)Table 7: X-Y separable basis set and interpolation functions for fourth derivative of Gaussian. Tocreate a fourth derivative of a Gaussian rotated through an angle �, use: G�4 = (ka(�)G4a+ kb(�)G4b+kc(�)G4c+ kd(�)G4d+ ke(�)G4e).tap # f1 f2 f3 f4 f50 0.9344 1.0 0.0 0.0 -0.55811 0.0606 0.7788 -0.4867 0.4851 -0.21732 -0.5729 0.3679 -0.1839 0.4583 0.20533 -0.1231 0.1054 0.1186 0.1970 0.20594 0.1084 0.0183 0.0916 0.0456 0.07155 0.0507 0.0019 0.0229 0.0060 0.01246 0.0084 0.0001 0.0028 0.0005 0.0012 G4 basis �lter �lter in x �lter in yG4a f1 f2G4b f3 f4G4c f5 f5G4d f4 f3G4e f2 f1Table 8: 13-tap �lters for x-y separable basis set for G4. Filters for which tap 0 is 0.0 have oddsymmetry about tap 0; the others have even symmetry. These �lters were taken from Table 7, with asample spacing of 0.5. Use the interpolation functions of Table 7.
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H4a H4b H4c H4d H4e H4fFigure 19: X-Y separable basis �lters for H4, listed in Tables 9 and 10.H4a = 0:3975(7:189x� 7:501x3+ x5)e�(x2+y2)H4b = 0:3975(1:438� 4:501x2+ x4)(y)e�(x2+y2)H4c = 0:3975(x3� 2:225x)(y2� :6638)e�(x2+y2)H4d = 0:3975(y3� 2:225y)(x2� :6638)e�(x2+y2)H4e = 0:3975(1:438� 4:501y2+ y4)(x)e�(x2+y2)H4f = 0:3975(7:189y� 7:501y3 + y5)e�(x2+y2)ka(�) = cos5(�)kb(�) = �5 cos4(�) sin(�)kc(�) = 10 cos3 sin2(�)kd(�) = �10 cos2(�) sin3(�)ke(�) = 5 cos(�) sin4(�)kf(�) = � sin5(�)Table 9: H4 basis set: x-y separable basis set and interpolation functions for �t to Hilbert transform offourth derivative of Gaussian. To synthesize a �lter oriented along direction �, use: H�4 = (ka(�)H4a+kb(�)H4b + kc(�)H4c + kd(�)H4d + ke(�)H4e + kf (�)H4f). While the H4 function is not exactly x-yseparable, these separable functions closely approximate H4.tap # f1 f2 f3 f4 f5 f60 0.0 1.0 0.5715 0.0 0.0 -0.66381 0.8322 0.7788 0.1161 0.3894 -0.3057 -0.32232 0.1006 0.3679 -0.3017 0.3679 -0.1791 0.12373 -0.2908 0.1054 -0.1520 0.1581 0.0016 0.16724 -0.0993 0.0183 -0.0041 0.0366 0.0258 0.06115 -0.0012 0.0019 0.0095 0.0048 0.0077 0.01086 0.0030 0.0001 0.0021 0.0004 0.0010 0.0010 H4 basis �lter �lter in x �lter in yH4a f1 f2H4b f3 f4H4c f5 f6H4d f6 f5H4e f4 f3H4f f2 f1Table 10: 13-tap �lters for x-y separable basis set for H4. Filters for which tap 0 is 0.0 have oddsymmetry about tap 0; the others have even symmetry. These �lters were taken from Table 9, with asample spacing of 0.5. Use the interpolation functions of Table 9.42



I Low -Order Terms of Fourier Series for Oriented Energy forG2 and H2EG2H2(�) = C1 + C2 cos(2�) + C3 sin(2�)+ higher order termswhereC1 = 0:5[G2b]2 + 0:25[G2a][G2c] + 0:375([G2a]2 + [G2c]2)+0:3125([H2a]2 + [H2d]2) + 0:5625([H2b]2 + [H2c]2)+0:375([H2a][H2c] + [H2b][H2d])C2 = 0:5([G2a]2 � [G2c]2) + 0:46875([H2a]2 � [H2d]2)+0:28125([H2b]2 � [H2c]2) + 0:1875([H2a][H2c]� [H2b][H2d])C3 = �[G2a][G2b]� [G2b][G2c]�0:9375([H2c][H2d] + [H2a][H2b])� 1:6875[H2b][H2c]� 0:1875[H2a][H2d]dominant orientation angle, �d = arg[C2;C3]2orientation strength = qC22 + C23Table 11: Fourier series for oriented energy, E, as a function of angle, �, for the G2, H2 quadrature�lter pair. G2a, G2b, : : : and H2a, H2b, : : : are the outputs of the x-y separable basis �lters listed inTables 4 and 6. � = 0 is the vertical orientation and � increases counter-clockwise.
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