Calibration of the SNLS

Nicolas Regnault

regnault@in2p3.fr

LPNHE

IN2P3 – Université Paris VI et Paris VII

France

Outline

- The SNLS Dataset
- The Megacam "Natural" magnitude system
- Calibration Procedure
- Uniformity of the Camera
- Conclusion

Calibration of the SNLS DATA

- 4 fields
 - D1 02:26:00 -04:30:00
 - D2 10:00:29 02:12:21
 - D3 14:17:54 +52:30:31
 - D4 22:15:31 -17:44:05
- 4 Megacam filters
 - ${\scriptstyle
 ho} {\scriptstyle \ } g_M, r_M, i_M, z_M$

- 2 Calibration sources
 - Landolt
 - *UBVRI*(Johnson-Cousins)
 - Smith et al.
 - u'g'r'i'z'
 - SDSS catalog
 - \square SDSS 2.5-m ugriz
- Goal: g_M , r_M , i_M , z_M mags for the field stars.
- Determine mag transformations \rightarrow other systems.
- Have a good determination of our filters.
 - be able to compare SN Megacam magnitudes and the nearby SN BVRI magnitudes...

The Megacam "Natural" system

... and how it translates into the standard systems

SDSS to Megacam

Redetermined using the D2, D3 to SDSS comparisons.

Landolt to Megacam (I)

Transformations determined using:

- the Smith et al. stars in common with the Landolt catalog.
- the $u'g'r'i'z' \rightarrow ugriz$ transformation given by the SDSS.
- the 2.5-m SDSS \rightarrow Megacam determined by ourselves.

$$g_M = V + 0.500 \times (B - V) - 0.097$$
 if $(B - V) < 0.5$ (1)

$$g_M = V + 0.425 \times (B - V) - 0.063$$
 if $(B - V) > 0.5$ (2)

$$r_M = R + 0.237 \times (V - R) + 0.113$$
 if $(V - R) < 1.0$ (3)

$$i_M = I + 0.160 \times (R - I) + 0.342$$
 if $(R - I) < 1.0$ (4)

$$z_M = I - 0.413 \times (R - I) + 0.510$$
 if $(R - I) < 1.0$ (5)

Landolt to Megacam (II)

Synthetic Filters

- Spectrophotometric standards
- Filter transmissions (from Fukugita et al and ref. therein)
- Megacam transmissions

Calibration Procedure

- Field star photometry
 - w/ adaptative aperture
- Field star selection (shape)
- Night/Band flux averages

- Standard star photometry
- Landolt star selection (> 5 measurements)

- photometric night selection (skyprobe)
- zero points / nights (w/ Landolt or SDSS)
- apply zero points to the field star measurements
- average the calibrated field star measurements

 \Rightarrow g_M , r_M , i_M , z_M secondary standard catalogs.

Landolt vs. SDSS Zero Points

- Zero Points determined for nights w/ Landolt + D2 or D3 obs.
- **Excellent agreement** < 0.5%.

Landolt Calibration Residual CTerms

- Megacam Landolt star observations versus the Landolt stars griz predicted magnitudes.
- Residual color terms (<0.05) & non linearities.</p>

Secondary Star Catalogs

color-color diagram

Zoom on the bluer branch

Uniformity of the Camera (I)

- Two different fields compared with the SDSS.
- Same Epoch Same Band (r) Same FLAT (04Am05.flat.r.36.01.fits)
- Different residual patterns across the camera.

D3 r 2004-05-23

Uniformity of the Camera (II)

- We compared Megacam observations together (D2 field, r band)
- Pathological nights in April 2004.
- Continuous pattern (not due to the electronics).
- Something (ice ?) on the dewar window (?)

Conclusion

- **Secondary star catalogs** (g_M, r_M, i_M, z_M)
 - produced for the 4 deep fields.
 - used to calibrate the SNLS lightcurves.
- Good understanding of the Megacam → other systems transformations.
- **J** Typical Zero Point rms: $\sim 2\%$
- Camera Uniformity
 - Observed Internal dispersion in the camera of about 1% (rms).
 - Variable δZP between CCDs (do not seem to depend on the flat).
 - This is not a real issue for the SN studies.
- Published Nearby SNeIa fields should be re-observed.