French CFHTLS Users Meeting November 06-07, 2006

CFHTLS... what next?

CFHTLS the current plan (from the Wide plan)

	Plan without 2+2					Plan with 2+2				
	W1	W2	W3	W4	Total	W1	W2	W3	W4	Total
07A	0	12	53	12	77	0	15	53	16	84
07B	64	28	0	26	118	88	22	0	18	128
08A	0	13	52	12	77	0	16	52	16	84
08B	58	0	0	8	64	34	0	0	8	42
Total	122	53	105	58		122	53	105	58	

CFHTLS beyond 2008A

- Completion of the current CFHTLS
- Extention of the current CFHTLS (FOV, depth, WIRCam)
- A totally new CFHTLS
- A mixture of those?
- Nothing

- If a completion/extention/new CFHTLS:
 - what, when, how long, how, with who?

CFHTLS completion beyond 2008A

Wide

- Minimum Wide: all fields for which we will have at least 2 filters should be completed to get the 5 filters
- Optimum Wide: Full coverage of W1/W3/W4 fields in 5 filters

Deep:

- All fields at the same depth in all filters. Need to define the depth in each filter
- All fields and all filters at the depth as defined in the CFHTLS document

CFHTLS Extention beyond 2008A

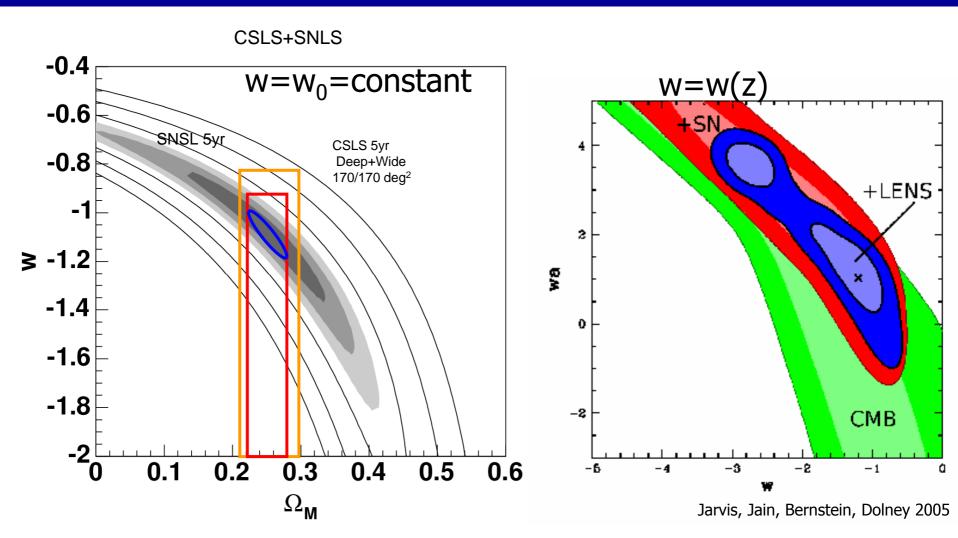
- Wide
 - Increase FOV
 - Increase depth
 - Increase wavelength coverage (WIRCam)
- Deep:
 - WIRCam
 - SNSL+

A new CFHTLS

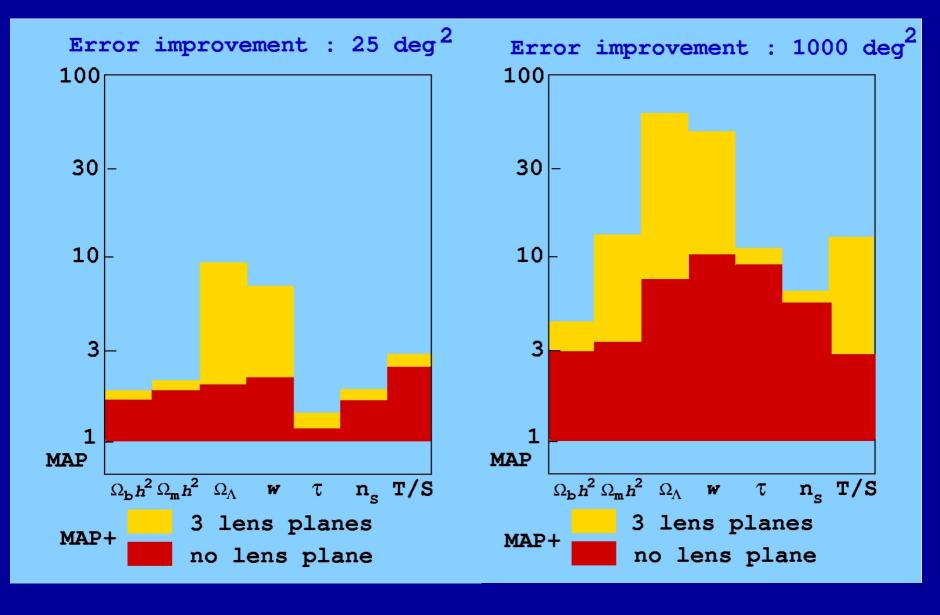
- Megacam?
- WIRCam?
- Espadon?
- Other? (e.g. time follow up)

Weak Lensing beyond 2008: international context

CFHTLS Completion/Extention beyond 2008A

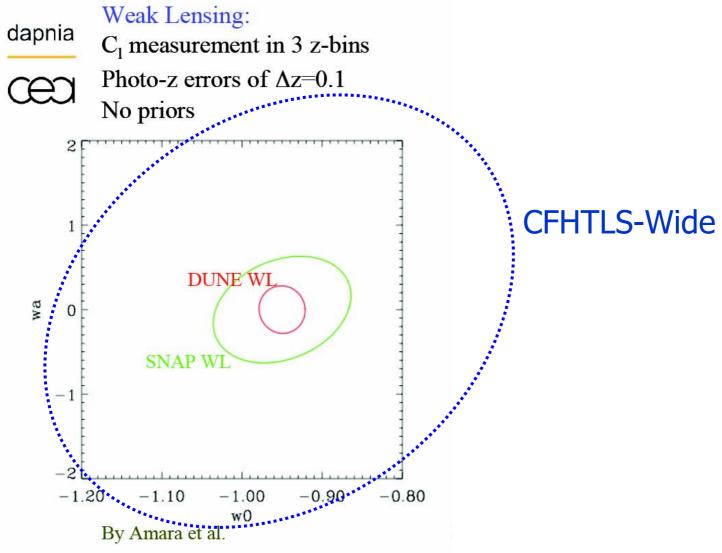

- Scientific motivations?
- What is the competition?

Scientific motivations and competition


Example: cosmic shear

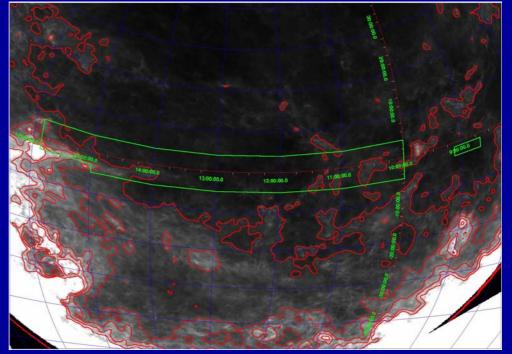
Exploring DE as function of redshift

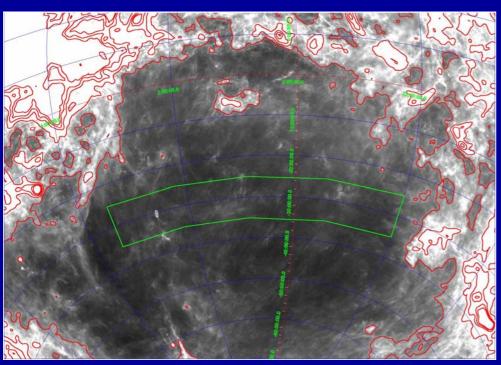
: still far from getting w_a



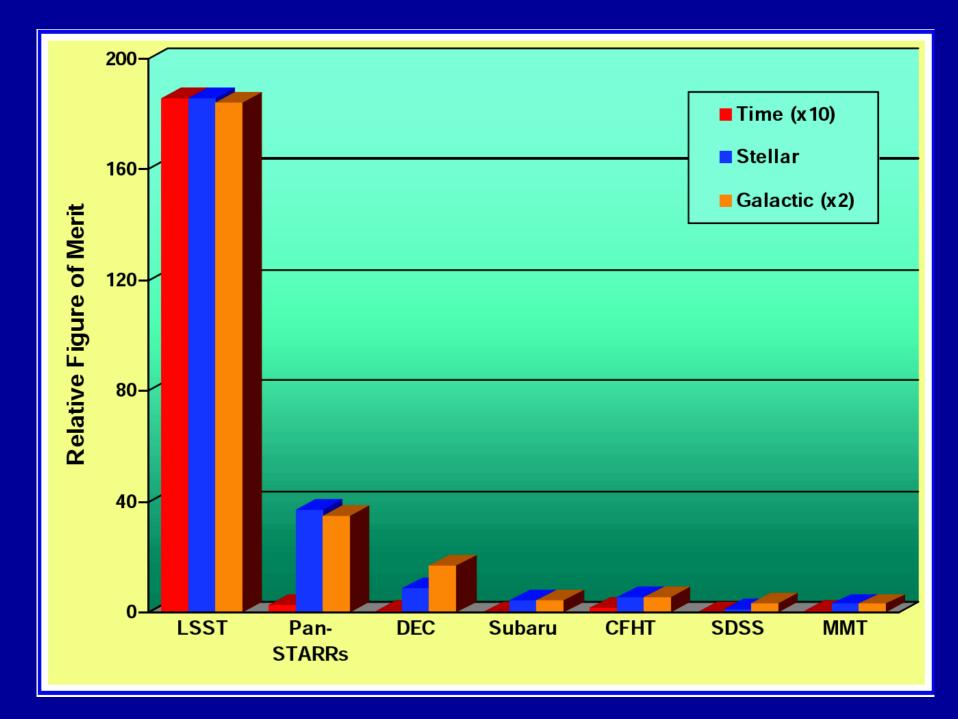
Breaking degeneracies with tomography

Constraints on Dark Energy (II)




Dark energy evolution: $w(a)=w_0+(a_n-a)w_a$, $a_n=0.6$ assume a flat universe

CFHTLS+ and the competition (zoom)


Survey	Sq. Degrees	Filters	Depth	Dates	Status
CTIO	75	1	shallow		published
VIRMOS	9	1	moderate		published
COSMOS	2 (space)	1	moderate		complete
DLS (NOAO)	36	4	deep		complete
Subaru	30?	1?	deep	2005?	observing
CFH Legacy	170	5	moderate	2004-2008	observing
RCS2 (CFH)	830	3	shallow	2005-2007	approved
SUBARU/Giga Cam	?	4/5?	deep	2010-2014?	?
DES (NOAO)	5000	4	moderate	2008-2012?	proposed
Pan- STARRS	~10,000?	5?	moderate	2006-2012?	~funded
LSST	15,000?	5?	deep	2014-2024?	proposed
JDEM/SNAP	1000+ (space)	9	deep	2013-2018?	proposed
VST/VISTA	1500/5000?	4+5	moderate	2010-2015?	proposed
DUNE 20000? (space)		2+1?	moderate	2012-2018?	proposed

KIDS-N

KIDS-S

How long does it takes to get 20000deg² As the CFHTLS-WL?

For all: same seeing and same fraction of good weather

5 filters: ugriz, same depth as CFHTLS-W (I_{AB} =24.5)

- CFHT/Megacam: 20000 nights
- SUBARU/SUPRIME: 25000 nights
- DES (3deg²): 5400 nights
- SUBARU/HyperCAM (2deg²): 2000 nights
- Pan-STARRS-4: 2700 nights (approx)
- LSST: 700 nights

BUT: efficiency depends on the scientific goals

Wide field surveys by 2009

- PanSTARR-1 / PanSTARR-4 ? (north)
- Subaru GigaCam (north)
- VST/VIKING (south)

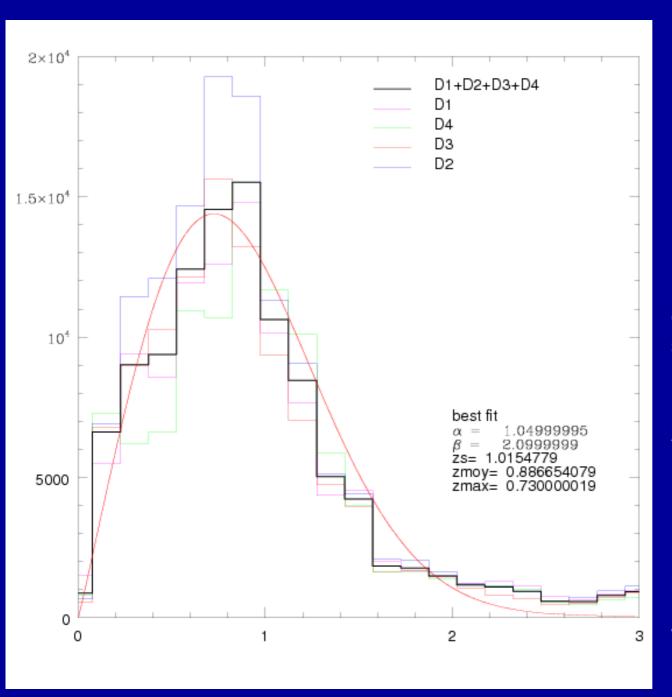
- But Megacam+WIRCam:
- ready, strong experience,
- A new survey could start by 2008B

A CFHTLS-2 WIDE?

Beyong 2008:

- continuing with Megacam (no development cost): camera/WFC works, experienced QSOs and data analysis teams, pipeline ready.
- Can be started immediately: no delays due to funding or technical
- 2008-2011 still competitive before next generation surveys

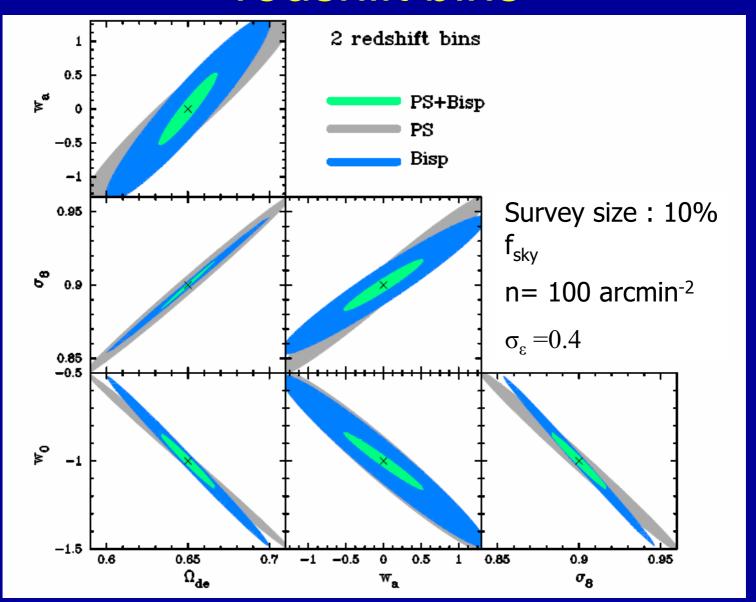
Questions:


- deep or wide?
- Optical one band or optical+NIR bands?
 - Option 1-4: assume 7 nights/months 5.5 hours/night, 3 years,
 - Same as the wide but I=24-band only: 1160 deg²
 - Same as the wide but u,g,r,i,z (3000+2500+2000+4300+3600sec): 324 deg²
 - 0.7 mag. deeper than the wide: 80 deg² BUT NIR more and more important since more and more <z> > 1 galaxies.
 - or 0.7 mag. Less deep than the wide: I=23.3: N(z) well known, NIR not critical, 4600 deg²
 - Option 5: decreasing depth by 0.5 mag would not be competitive with respect to KIDS: 1500 deg² u,g,r,i,z
 - Option 6: focus on WIRCAM follow up of CFHTLS-1 wide fields (2 wides ? Or J and H only?)
- Usefull to explore deeper the scientific return expected of this low cost, easy-to-setup, until other facilities be operational.
- The selected areas could also be followed by other surveys later.

CFHTLS Wide by 2009

- RCS2 in all band or near? : seem less competitive than KIDS/VIKING but could be done faster
- CFHTLS Wide in WIRCam: hard to cover the whole filed, but seems attractive for photo-z if we focus on fields with spectro?
- CFHTLS deeper? Seems hard to compete with SUBARU
- A join SNLS+Wide for SNIa+WL?

Errors and systematics uncertainties


- PSF corrections
- Redshift distribution
- Clustering
- Contamination by overlapping galaxies
- Intrinsic alignement
- Intrinsic foreground/backgound correlations
- Sampling variance
- Non-linear variance
- Non-linear dark matter power spectrum
- + cosmic variance (survey size, survey topology, depth)

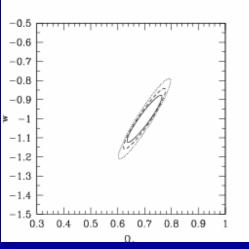
The uncertain n(z)

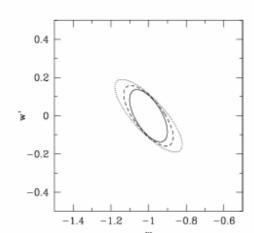
- HDF size too small as compared to CFHTLS: sampling variance increases error by 10% (van Waerbeke et al 2006)
- Photo-z from CFHTLS-Deep + VVDS: Seem to peak at higher z than our HDF z-calibration?
 Would decrease σ₈

Using high-order statistics and 2 redshift bins

Decoupling geometry and power spectrum

$$\begin{split} P_{\mathrm{g}\gamma}(\ell;f,b) &= \frac{3\Omega_{\mathrm{m}0}H_0^2}{2c^2} \int \frac{d\chi_{\mathrm{f}}}{a(\chi_{\mathrm{f}})} W_f(\chi_{\mathrm{f}}) \int d\chi_{\mathrm{b}} W_b(\chi_{\mathrm{b}}) \\ &\times \frac{\chi_{\mathrm{b}} - \chi_{\mathrm{f}}}{\chi_{\mathrm{b}}\chi_{\mathrm{f}}} P_{\mathrm{g}\delta}(\frac{\ell}{\chi_{\mathrm{f}}},\chi_{\mathrm{f}}) \Theta(\chi_{\mathrm{b}} - \chi_{\mathrm{f}}) \end{split}$$


f= foreground ; b=background
If overlap between the 2 population is small:

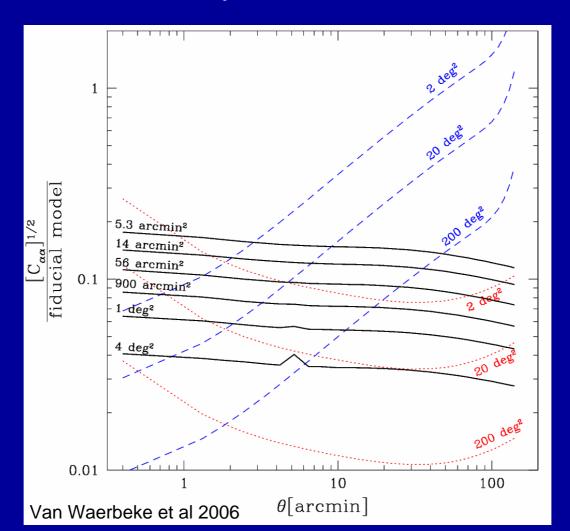

$$\begin{split} P_{\gamma\gamma}(\ell;f;b) &= \left(\frac{3\Omega_{\rm m0}H_0^2}{2e^2}\right)^2 \\ &\times \int d\chi_{\rm f}W_f(\chi_{\rm f}) \int d\chi_{\rm b}W_b(\chi_{\rm b}) \\ &\times \int \frac{d\chi}{a(\chi)^2} \frac{\chi_{\rm b} - \chi}{\chi_{\rm b}} \frac{\chi_{\rm f} - \chi}{\chi_{\rm f}} P_{\delta\delta}\left(\frac{\ell}{\chi},\chi\right) \Theta(\chi_{\rm b} - \chi) \; \Theta(\chi_{\rm f} - \chi). \end{split}$$

$$\begin{split} P_{\mathrm{g}\gamma}(\ell;f,b) &\approx F(\ell;f) + G(\ell;f)/\chi_{\mathrm{eff}}(b) \\ P_{\gamma\gamma}(\ell;f,b) &\approx A(\ell;f) + B(\ell;f)/\chi_{\mathrm{eff}}(b) \end{split}$$

Scaling of lensing signal independent of the power spectrum but only depends on geometry

$$\frac{P(\ell; f, b) - P(\ell; f, b')}{P(\ell; f, b'') - P(\ell; f, b''')} = \frac{\chi_{\text{eff}}(b)^{-1} - \chi_{\text{eff}}(b')^{-1}}{\chi_{\text{eff}}(b'')^{-1} - \chi_{\text{eff}}(b''')^{-1}}$$

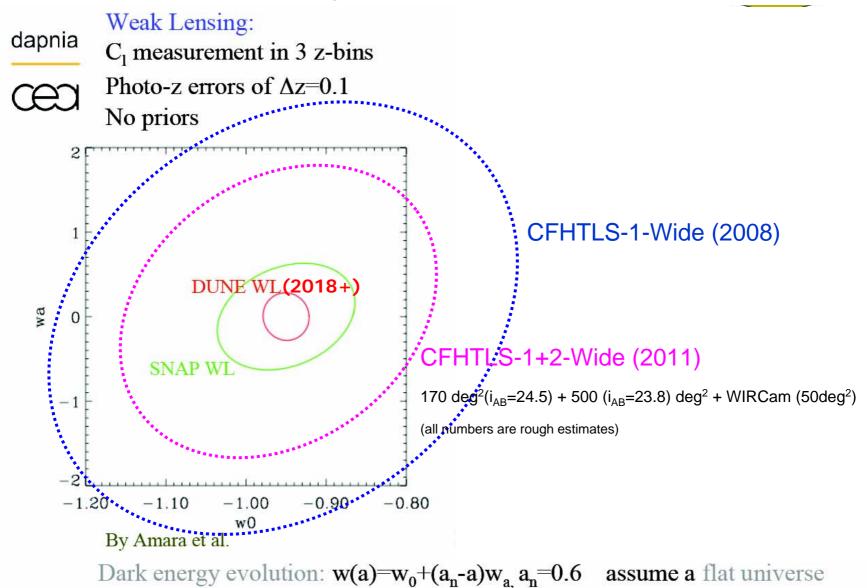
Need at least 3 source planes


Zhang, Hui, Stebbins 2003:

4000 deg²

Error on photo-z: 0.01, 0.02, 0.05

Sampling variance and survey properties: importance of well calibrated photo-z;


Wide: fraction spectro-calibrated almost ok

Most important needs for the future

- Sky coverage
- 5 bands
- NIR data WIRCam (get better accuracy on mean photo-z then individual photo-z)
- A bit less deep to have better control of n(z)?
- e.g. I_{AB}=23.8 + WIRCam
- Note: VST dalayed, survey cannot start before Dec. 2007

A tentative estimate of prediction in w with a CFHTLS-2 Wide

CFHTLS beyond 2008

- Many options
- Nothing clear yet
- IMPORTANT: first complete CFHTLS-1
- PLEASE propose before May 2007 for the next CFHT users Meeting in Marseille