Cosmologie: Observations, modèles d'univers et paramètres cosmologiques

Cours M2/C1 2008-2009 Partie 2

Yannick Mellier

Institut d'Astrophysique de Paris

mellier@iap.fr Tel: 0144328140 Bureau: 210a

Cours Cosmologie C1 Master M2 2008-2009

Transparents mis en ligne le 13/03/09 (pdf) P1 : <u>http://terapix.iap.fr/article.php?id_article=674</u>

P2 : http://terapix.iap.fr/article.php?id_article=677

Examens précédents Exam+correction : <u>http://terapix.iap.fr/article.php?id_article=679</u>

• Cours: pdf sur le web prêt (version 01/03/09) http://terapix.iap.fr/rubrique.php?id_rubrique=113

Examen: Jeudi 19 MARS de 10 à 12 hrs ; Ecrit , 2hrs, avec documents

- Description de la géométrie et du contenu de l'univers:
 - H_o : constante de Hubble
 - − Ω_k : courbure de l'univers (Ω_{totale} = 1 − Ω_k)
 - Ω_{Λ} : constante cosmologique
 - $-\Omega_w$: contenu en "énergie noire" (autre que Ω_Λ et génériquement qualifiée par le terme "quintessence")
 - Ω_b : fraction de matière baryonique
 - Ω_m : fraction de matière totale (baryon, matière noire chaude et/ou froide)
 - Ω_c : fraction de matière noire froide
 - Ω_γ : fraction de photons
 - ω : rapport P/ρ caractéris ant l'équation d'état de l'énergie noire ($\omega=-1$ pour une constante cosmologique)
 - − $ω_1 = dω/dz$: paramétrisation de la dépendance en redshift (temporelle) de ω (dans ce cas: $ω ≈ ω_0 + ω_1(z)$
 - M_ν : somme des masses des composantes de neutrinos
 - N_{\nu} : nombre d'espèces de neutrinos
- Description astrophysique du milieu
 - τ : profondeur optique de re-ionisation à la période du découplage
 - b : facteur de biais linéaire
- Description de la physique de l'univers primordiale
 - C₁₀ : normalisation du spectre de puissance des fluctuations de densité initiales
 - n_s : indice de la composante scalaire du spectre du puissance des fluctuations
 - n_T : indice de la composante tensorielle du spectre du puissance des fluctuation
 - r : rapport des amplitudes scalaires et vectorielles
 - $-\alpha = {\rm d}{\rm ln} n_s/{\rm d}{\rm ln} k$: running spectral indix caractérisant l'évolution de l'indice du spectre scalaire en fonction de l'échelle.

- Une vingtaine de paramètres à tenter déterminer
- Des dégénérescences
 entre paramètres

- t₀ : age de l'univers

1. Densité critique à t=t₀

$$\rho_{0c} = 1.88 \ 10^{-29} \ h^{-2} \ g \ cm^{-3}$$

2. Densité de photons

$$\Omega_{\gamma} = \frac{\rho_{CMB}}{\rho_{ctitic}}$$

$$\Omega_{\gamma} = \frac{4.8 \ 10^{-34}}{1.88 \ 10^{-29} \ h^2} = 2.55 \times 10^{-5} \ h^{-2}$$

3. Constante de Hubble $H_0 = v/D$

Constante de Hubble

Méthode	H_0
Méthodes traditionnelles (toutes confondues)	74 ± 10
Baade-Wiesselink	60 ± 10
Cepheid HST	72 ± 8
SnIa	64 ± 3
SZ	55 ± 17
Décalage temporel	64 ± 13
WMAP-5 (CMB)	72 ± 3
WMAP-5 (CMB) BAO $+$ SNIa	70.1 ± 1.3

Constante de Hubble

- 4. Ω_m par mesure de masse et M/L
- Courbe de rotation des galaxies (galaxies spirales)
- Dynamique des galaxies et Théorème du viriel (galaxies elliptiques, groupes et amas de galaxies)
- Dynamique du gaz X (elliptiques très massives, groupes et amas de galaxies)
- Lentilles gravitationnelles (galaxies spirales, amas de galaxies)

 Ω_m par mesure de masse et M/L

$$\rho_L = 2. \pm 1. \times 10^8 \ h \ L_{\odot} \mathrm{Mpc}^{-3}$$

 $\rho_{crit} = 1.88~h^2 \times 10^{-29} {\rm g.cm^{-3}} = 2.75~h^2 \times 10^{11}~M_\odot {\rm Mpc^{-3}} \;.$

$$\left(\frac{M}{L}\right)_{crit} = \frac{\rho_{crit}}{\rho_L} = 1375 \ h \pm 50\% \ .$$

Du système *i*
$$\Omega_i = \frac{\langle M/L \rangle_i}{(M/L)_{crit}}$$

Courbes de rotation des galaxies spirales

Détermination des paramètres cosmologiques Des courbes de rotation plates...

Des halos de ~ 200 kpc contenant 90% de la masse

Courbes de rotation des galaxies spirales m v²/R = m GM/R²??

« Masse viriel »

Considérons un système auto-gravitant composé de N masses ponctuelles dont les positions, vitesses et masses sont représentées respectivement par les quantités r_i , v_i et m_i . Le moment d'inertie du système est alors:

$$I = \sum_{i=1}^{N} m_i r_i^2.$$
 (451)

Par conséquent:

$$\dot{I} = 2 \sum_{i=1}^{N} m_i \boldsymbol{r}_i \cdot \boldsymbol{v}_i, \tag{452}$$

 \mathbf{et}

$$\ddot{I} = 2 \sum_{i=1}^{N} m_i (v_i^2 + r_i . \ddot{r}_i).$$
(453)

Puisque le système est <u>auto-gravitant</u>, l'accélération d'une particule *i* est la somme des interactions gravitationnelles de chacune des particules:

$$\ddot{\boldsymbol{r}}_i = \sum_{j \neq i} Gm_j \frac{(\boldsymbol{r}_j - \boldsymbol{r}_i)}{|\boldsymbol{r}_j - \boldsymbol{r}_i|^3}.$$
(454)

« Masse viriel »

Le terme en v_i^2 est associé à l'énergie cinétique totale K du système autogravitant, de sorte que:

$$\frac{1}{2}\ddot{I} = 2 K + \sum_{i=1}^{N} \sum_{j \neq i} Gm_i m_j \frac{\boldsymbol{r}_i \cdot (\boldsymbol{r}_j - \boldsymbol{r}_i)}{|\boldsymbol{r}_j - \boldsymbol{r}_i|^3}.$$
(455)

On peut exprimer le second terme plus simplement avec $\mathbf{r}_i = \mathbf{r}_i - \mathbf{r}_j + \mathbf{r}_j$:

$$\sum_{j \neq i} \frac{\mathbf{r}_{i} \cdot (\mathbf{r}_{j} - \mathbf{r}_{i})}{|\mathbf{r}_{j} - \mathbf{r}_{i}|^{3}} = \sum_{j \neq i} \frac{(\mathbf{r}_{i} - \mathbf{r}_{j}) \cdot (\mathbf{r}_{j} - \mathbf{r}_{i})}{|\mathbf{r}_{j} - \mathbf{r}_{i}|^{3}} + \sum_{j \neq i} \frac{\mathbf{r}_{j} \cdot (\mathbf{r}_{j} - \mathbf{r}_{i})i}{|\mathbf{r}_{j} - \mathbf{r}_{i}|^{3}},$$
(456)

d'où:

$$\sum_{j \neq i} \frac{\mathbf{r}_{i} \cdot (\mathbf{r}_{j} - \mathbf{r}_{i})}{|\mathbf{r}_{j} - \mathbf{r}_{i}|^{3}} = -\sum_{j \neq i} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{j \neq i} \frac{\mathbf{r}_{j} \cdot (\mathbf{r}_{j} - \mathbf{r}_{i})}{|\mathbf{r}_{j} - \mathbf{r}_{i}|^{3}},$$
(457)

On transfère le second terme de droite à gauche, puis on y intervertit les indices. Les deux termes de gauche sont alors identiques, d'où l'on déduit:

$$\frac{1}{2}\ddot{I} = 2 K - \frac{G}{2} \sum_{i=1}^{N} \sum_{j \neq 1} \frac{m_i m_j}{|\mathbf{r}_i - \mathbf{r}_j|} = 2 K + W.$$
(458)

13

« Masse viriel »

Cette quantité est quel quefois appelée le Viriel, K + W représentant l'énergie totale du système autogravitant.

Dans l'hypothèse où le <u>système est stationnaire</u>, on peut admettre que sur plusieurs fois l'échelle de temps dynamique caractérisant le système, la moyenne temporelle de \ddot{I} est nulle. L'échelle de temps dynamique est le temps typique qu'il faut à une particule pour traverser l'ensemble du système auquel elle est associée. Ce n'est généralement pas une quantité observable puisqu'en pratique l'astronome n'observe un système qu'une seule fois et/ou pendant une courte période. L'utilisation du théorème du viriel pour les galaxies n'est donc pas rigoureuse, mais on admet néanmoins que pour les systèmes observés on a:

$$2 K + W \approx 0.$$
 (459)

En d'autres termes, il est implicitement admis que les systèmes sont à l'équilibre et dans un état stationnaire. Ceci n'est vrai que lorsque l'échelle de temps dynamique du système est beaucoup plus courte que son âge au moment de l'observation. En résumé on a donc:

En resume on a donc:

- Système lié: $E_{totale} \leq 0 \iff K + W \leq 0$.
- Système Stationnaire: 2K + W = 0.

Des observations à la « masse viriel »

$$2E_{c} + E_{g} = 0 , \qquad \qquad \sigma^{2} = \frac{GM_{dyn}}{R}$$

$$\frac{1}{3} \sum_{i} m_{i} v_{i}^{2} = \frac{1}{3} M \frac{\sum_{i} v_{i}^{2}}{N} = \frac{1}{3} M \sigma^{2}$$

$$+$$

$$\sum_{paires} \frac{m_{i}m_{j}}{r_{ij}} = \frac{M}{N} \frac{M}{N} \sum_{paires} \frac{1}{R_{ij}} \left\langle \frac{1}{\sin\phi_{ij}} \right\rangle^{-1} = M^{2} \left[\frac{1}{N^{2}} \sum_{paires} \frac{1}{R_{ij}} \right] \cdot \frac{2}{\pi} = \frac{2}{\pi} M^{2} \left\langle \frac{1}{R_{ij}} \right\rangle .$$

$$Observé \qquad Observé$$

$$M_{dyn} = \frac{3\sigma^{2}}{G} \frac{\pi}{2} \left\langle \frac{1}{R_{ij}} \right\rangle^{-1}$$

Masse « X » dans les amas de galaxies

Amas de galaxies Coma, z=0.023

XMM-Newton

Masse « X »

Système sphérique + Equilibre hydrostatique:

Gaz parfait:....

$$\frac{\mathrm{d}P_X}{\mathrm{d}r} = -\frac{GM_t\rho_X}{r^2}$$

$$P_X = \frac{\rho_X k_B T_X}{\mu m_H}$$

- Equilibre hydrostatique pour le gaz chaud X :

$$M_t(r) = -\frac{k_B T_X(r) r^2}{G \mu m_H} \left[\frac{\mathrm{d} \left(\ln \rho_X \right)}{\mathrm{d} r} + \frac{\mathrm{d} \left(\ln T_X \right)}{\mathrm{d} r} \right]$$

Masse « X »

Système sphérique + Equilibre hydrostatique:

Gaz parfait:....

$$\frac{\mathrm{d}P_X}{\mathrm{d}r} = -\frac{GM_t\rho_X}{r^2}$$

$$P_X = \frac{\rho_X k_B T_X}{\mu m_H}$$

- Equilibre hydrostatique pour le gaz chaud X :

$$M_t(r) = -\frac{k_B T_X(r) r^2}{G \mu m_H} \left[\frac{\mathrm{d} \left(\ln \rho_X \right)}{\mathrm{d} r} + \frac{\mathrm{d} \left(\ln T_X \right)}{\mathrm{d} r} \right]$$

- Equilibre hydrostatique pour la matière noire:

$$M_t(r) = -\frac{k_B T_{DM}(r) r^2}{G\mu_{DM} m_{DM}} \left[\frac{\mathrm{d} \left(\ln \rho_{DM} \right)}{\mathrm{d}r} + \frac{\mathrm{d} \left(\ln T_{DM} \right)}{\mathrm{d}r} \right]$$

Masse « X »

- Gaz matière noire=sphère isotherme et dispersion de vitesse isotrope

$$\sigma_{DM}^2 = \frac{k_B T_{DM}}{\mu_{DM} m_{DM}}$$

- Gax X : sphère isotherme

$$M_t(r) = -\frac{k_B T_X(r) r^2}{G\mu m_H} \left[\frac{\mathrm{d} \left(\ln \rho_X \right)}{\mathrm{d}r} \right] = -\frac{\sigma_{DM}^2 r^2}{G} \left[\frac{\mathrm{d} \left(\ln \rho_{DM} \right)}{\mathrm{d}r} \right]$$

Masse « X »

$$\rho(r) = \rho_o \left(1 + \left(\frac{r}{r_c}\right)^2 \right)^{-3/2}$$

$$\rho_t(r) = \rho_{ot} \left(1 + \left(\frac{r}{r_c}\right)^2 \right)^{-3/2}$$

$$\rho_X(r) = \rho_{0X} \left(1 + \left(\frac{r}{r_c}\right)^2 \right)^{-3\beta/2}$$

$$\beta = \frac{\mu m_H \sigma_{DM}^2}{k_B T_X}$$

β est déterminé en ajustant le profil avec les données X

$$M_t(r) = 1.13 \times 10^{15} \beta \ \left(\frac{T_X}{10 {\rm keV}}\right) \times \left(\frac{r}{{\rm Mpc}}\right) \frac{\left(\frac{r}{r_c}\right)^2}{\left[1 + \left(\frac{r}{r_c}\right)^2\right]} h^{-1} {\rm M}_\odot$$

2

Masse « X »

Masse « lensing »

Lentilles gravitationnelles

- Lentilles minces
- Petits angles de déflexion
- Champs faibles
- Champs stationnaires
- Lentilles transparentes

Angle de déflexion

Angle de déflexion

Champs faibles:
$$ds^2 = c^2 \left(1 + \frac{2\Phi}{c^2}\right) dt^2 - \left(1 - \frac{2\Phi}{c^2}\right) dl^2$$
.

Pour un photon $ds^2=0$:

$$\mathrm{d}t = \frac{1}{c} \left(\frac{1 - \frac{2\Phi}{c^2}}{1 + \frac{2\Phi}{c^2}} \right)^{1/2} \mathrm{d}l \; \approx \; \frac{1}{c} \left(1 - \frac{2\Phi}{c^2} \right) \mathrm{d}l \; .$$

$$\implies ct = \int \left(1 - \frac{2\Phi}{c^2}\right) dl$$
$$ct = \int \left(1 - \frac{2\Phi}{c^2}\right) \left[\left(\frac{dx}{dz}\right)^2 + \left(\frac{dy}{dz}\right)^2 + 1\right]^{1/2} dz . \qquad \text{avec } d \,|^2 = dx^2 + dy^2 + dz^2$$

Formellement identique à la propagation d'un faisceau dans un milieu d'indice n:

$$n = \left(1 - \frac{2\Phi}{c^2}\right) \ .$$

Angle de déflexion

On peut faire varier t uniquement suivant x(z):

$$c\delta t = \int \frac{\partial n}{\partial x} \delta x \left[\left(\frac{\mathrm{d}x}{\mathrm{d}z} \right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z} \right)^2 + 1 \right]^{1/2} \mathrm{d}z \\ + \int n \left[\left(\frac{\mathrm{d}x}{\mathrm{d}z} \right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z} \right)^2 + 1 \right]^{-1/2} \frac{\mathrm{d}x}{\mathrm{d}z} \frac{\mathrm{d}\delta x}{\mathrm{d}z} \mathrm{d}z$$

Intégration du second terme par parties :

$$\int n\left[\left(\frac{\mathrm{d}x}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2} \frac{\mathrm{d}x}{\mathrm{d}z} \frac{\mathrm{d}\delta x}{\mathrm{d}z} \mathrm{d}z = \begin{bmatrix} \delta x & n\left[\left(\frac{\mathrm{d}x}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\end{bmatrix}_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}x}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}x}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right\}_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}x}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}x}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right\}_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}x}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}x}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right\}_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}x}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right\}_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}x}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right\}_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right\}_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right\}_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right]_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right]_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right]_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right]_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right]_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left[n & \frac{\mathrm{d}z}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}z}\right)^2 + 1\right]^{-1/2}\right]_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left[n & \frac{\mathrm{d}z}{\mathrm{d}z} \right]_S^O + 1\right]_S^O + \int \mathrm{d}z & \delta x & \frac{\mathrm{d}z}{\mathrm{d}z} \left[n & \frac{\mathrm{d}z}{\mathrm{d}z} \right]_S^O + 1\right]_S^O + 1\right]_S^O + 1$$

Comme $\delta x = 0$ en S et O (points source et observateur), le premier terme est nul et donc:

$$c\delta t = \int dz \ \delta x \ \left\{ \ \frac{\partial n}{\partial x} \left[\left(\frac{dx}{dz} \right)^2 + \left(\frac{dy}{dz} \right)^2 + 1 \right]^{1/2} \ - \frac{d}{dz} \left[n \ \frac{dx}{dz} \left[\left(\frac{dx}{dz} \right)^2 + \left(\frac{dy}{dz} \right)^2 + 1 \right]^{-1/2} \right] \right\} \ .$$

Principe de Fermat : $\delta t = 0 \forall x$:

$$\frac{\partial n}{\partial x} \left[\left(\frac{\mathrm{d}x}{\mathrm{d}z} \right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z} \right)^2 + 1 \right]^{1/2} = \frac{\mathrm{d}}{\mathrm{d}z} \left[n \frac{\mathrm{d}x}{\mathrm{d}z} \left[\left(\frac{\mathrm{d}x}{\mathrm{d}z} \right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}z} \right)^2 + 1 \right]^{-1/2} \right] \,.$$

Soit, en intégrant:

Comme en S et en O, le champ du déflecteur est nul, $\underline{n(S)=n(O)=1}$ $= \int_{S}^{O} \frac{\partial n}{\partial x} dl = \left(\frac{dx}{dl}\right)_{S} - \left(\frac{dx}{dl}\right)_{O} = \theta_{S} - \theta_{O} = \alpha$

Généralisation pour une configuration (x,y)

$$\boldsymbol{\alpha} = \int_{S}^{O} \boldsymbol{\nabla}_{\perp} n \, \mathrm{d} l \; .$$

Compte tenu de la relation en *n* et Φ :

$$oldsymbol{lpha} = -rac{2}{c^2} \, \int_S^O oldsymbol{
abla}_\perp \Phi \, \mathrm{d} l ~.$$

Angle de déflexion

27

Configuration

On a

$$\theta_S = \theta_I + \alpha$$
 (139)

avec

$$\alpha = \frac{2}{c^2} \int \nabla_{\perp} dl = \frac{2}{c^2} \int_0^{\chi_S} \frac{\left[f\left(\chi_S - \chi_L\right)\right]}{f\left(\chi_S\right)} \cdot \nabla_{\perp} \Phi\left(\chi\right) d\chi \tag{140}$$

Hyp: la lentille est mince : la déflexion de la lumière se produit dans une région suffisamment petite par rapport à la distance source-observateur.

Dans ce cas, on peut intégrer selon la ligne de visée la densité de matière en intégrant dans tout le domaine $[-\infty; +\infty]$. On a donc:

$$\alpha = \frac{2G}{c^2} \frac{\left[f\left(\chi_S - \chi_L\right)\right]}{f\left(\chi_S\right)} \int_{-\infty}^{+\infty} \mathrm{d}z \nabla_{\perp} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \mathrm{d}^3 \mathbf{r}'$$
(141)

Posons

$$\mathbf{r}' = \boldsymbol{\xi}' + \boldsymbol{z}'\mathbf{e} \tag{142}$$

On a donc

$$\nabla_{\perp} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) = -\frac{(\xi - \xi')}{|\mathbf{r} - \mathbf{r}'|^3} \tag{143}$$

et donc

$$\alpha = \frac{\left[f\left(\chi_{S} - \chi_{L}\right)\right]}{f\left(\chi_{S}\right)} \int_{-\infty}^{+\infty} \mathrm{d}z \int \rho\left(\xi, z'\right) \cdot \left(\xi - \xi'\right) \cdot \left[\frac{1}{\left|\left(\xi - \xi'\right)^{2} + (z - z')^{2}\right|^{3/2}}\right] \mathrm{d}^{2}\xi \mathrm{d}z'$$
(144)

Or

$$\int_{-\infty}^{+\infty} \left[\frac{1}{\left| \left(\xi - \xi'\right)^2 + (z - z')^2 \right|^{3/2}} \right] \mathrm{d}z = \frac{2}{|\xi - \xi'|^2} \tag{145}$$

donc

$$\alpha = \frac{\left[f\left(\chi_S - \chi_L\right)\right]}{f\left(\chi_S\right)} \int \left[\frac{\left(\xi - \xi'\right)}{|\xi - \xi'|^2}\right] \int \rho\left(\xi', z'\right) dz' \implies \alpha = \frac{\left[f\left(\chi_S - \chi_L\right)\right]}{f\left(\chi_S\right)} \int \left[\frac{\left(\xi - \xi'\right)}{|\xi - \xi'|^2}\right] \Sigma\left(\xi'\right) d^2\xi'$$
(146)

Relation α-Σ

29

Masse « lensing »

Equation des lentilles:

$$\boldsymbol{\theta}_{s}D_{os} + \boldsymbol{\alpha}D_{ls} = \boldsymbol{\theta}_{i}D_{os} \ ,$$

Angle de déflexion:

$$oldsymbol{lpha} = -rac{2}{c^2} \, \int_S^O oldsymbol{
abla}_oldsymbol{\Phi} \, \mathrm{d}l \, \, .$$

Masse ponctuelle

$$\alpha = (4G/c^2)(M/D_{ol}\theta)$$

Masse « lensing »

$$\theta_S = \theta_I + \frac{D_{LS}}{D_{OL} D_{OS}} \frac{4GM}{c^2 \theta_I} \; . \label{eq:theta_states}$$

Alignement parfait: $\theta_s = 0$

$$\theta_E = \left[\frac{4GM}{c^2} \frac{D_{LS}}{D_{OL} D_{OS}}\right]^{1/2}.$$

Anneaux d'Einstein

Einstein Ring Gravitational Lenses		Hubble Space Telescope = ACS	
	NO CO	í C ,	
J073728.45+321618.5	J095629.77+510006.6	J120540.43+491029.3	J125028.25+052349.0
J140228.21+632133.5	J162746.44-005357.5	J163028.15+452036.2	J232120.93-093910.2
ASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team			STScI-PRC05-3

Masse « lensing »

$$\theta_S = \theta_I + \frac{D_{LS}}{D_{OL} D_{OS}} \frac{4GM}{c^2 \theta_I} \; . \label{eq:theta_states}$$

Alignement parfait: $\theta_s = 0$

 θ_E

$$\theta_E = \left[\frac{4GM}{c^2} \frac{D_{LS}}{D_{OL} D_{OS}}\right]^{1/2}.$$

- Etoile à 1 kpc: 0.001"
- Galaxie à 1 Gpc: 1"
 - Amas de galaxies à z=0.3: 30 "

Mulitiplicité et déformation des images

Equation des lentilles

$$\boldsymbol{\theta}_s D_{os} + \boldsymbol{\alpha} D_{ls} = \boldsymbol{\theta}_i D_{os} \; ,$$

Angle de déflexion

 $\alpha = (4G/c^2)(M/D_{ol}\theta)$

Source: point

Lentille: masse ponctuelle

Source: trait (étendue en 1D)

Lentille: masse ponctuelle

Source: ellipse (étendue en 2D)

Amplification

- Conservation de la brillance de surface (Etherington 1933)
- ⇒ Changement de flux uniquement dû au changement d'aire de la source
- On définit l'amplification $\mu = S_v / S_0 = I_v \cdot \Delta\Omega / I_0 \cdot \Delta\Omega_0 = \Delta\Omega / \Delta\Omega_0$
- Soit A, le Jacobien définit à partir de l'équation des lentilles:

$$A_{ij}(\mathbf{x}) = \partial y_i / \partial x_j = \delta_{ij} - \Psi_{,x_i y_j}$$

On a alors

$$\mu = |\mu(\mathbf{x})| = 1 / |\text{Det}[A(\mathbf{x})]|$$

• Divergence possible aux *points critiques*

Matrice amplification, convergence, et cisaillement gravitationnel

$$A\left(\vec{\theta}\right) = \frac{\partial \vec{\beta}}{\partial \theta} = \left(\delta_{ij} - \frac{\partial^2 \psi\left(\vec{\theta}\right)}{\partial \theta_i \partial \theta_j}\right) = M^{-1}$$

Convergence, Shear

$$\begin{cases} \kappa = \frac{1}{2}(\psi_{,11} + \psi_{,22}) \\ \gamma_1\left(\vec{\theta}\right) = \frac{1}{2}(\psi_{,11} - \psi_{,22}) = \gamma\left(\vec{\theta}\right) \cos\left[2\varphi\left(\vec{\theta}\right)\right] \\ \gamma_2\left(\vec{\theta}\right) = \psi_{,12} = \gamma\left(\vec{\theta}\right) \sin\left[2\varphi\left(\vec{\theta}\right)\right] \end{cases}$$

• Magnification, Convergence, Shear

$$A = \mathcal{M}^{-1} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

$$\mathcal{M}^{-1} = (1 - \kappa) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \gamma \begin{pmatrix} \cos(2\varphi) & \sin(2\varphi) \\ \sin(2\varphi) & -\cos(2\varphi) \end{pmatrix}$$

where $\gamma=\gamma_1+\mathrm{i}\,\gamma_2=|\gamma|e^{2\mathrm{i}\,\varphi}$

Amplification amplitude

$$\boldsymbol{\mu} = (\det A)^{-1} = \frac{1}{\left[\left(1 - \kappa \right)^2 - |\boldsymbol{\gamma}|^2 \right]}$$

• Valeurs propres de la matrice d'amplification $1 - \kappa + \gamma$, $1 - \kappa + \gamma$

Déformation des images

Détermination des paramètres cosmologiques

Masse « lensing »

$$\begin{pmatrix} 1-\kappa-\gamma_1 & -\gamma_2 \\ -\gamma_2 & 1-\kappa+\gamma_1 \end{pmatrix} = \begin{pmatrix} 1-\partial_{xx}\varphi & -\partial_{xy}\varphi \\ -\partial_{xy}\varphi & 1-\partial_{yy} \end{pmatrix}$$

$$\varphi = 4\pi \frac{\sigma^2}{c^2} \frac{D_{LS}}{D_{OS}} r$$

 $\boldsymbol{\theta}_{S} = \boldsymbol{\theta}_{I} - 4\pi \frac{\sigma^{2}}{c^{2}} \frac{D_{LS}}{D_{OS}} \frac{\boldsymbol{\theta}_{I}}{|\boldsymbol{\theta}_{I}|}$

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 - 4\pi \frac{\sigma^2}{c^2} \frac{D_{LS}}{D_{OS}} \frac{1}{|\boldsymbol{\theta}_I|} \end{pmatrix}$ Cas de l'amas de galaxies Abell 370

$$\theta_{SIS} = 4\pi \frac{\sigma^2}{c^2} \frac{D_{LS}}{D_{OS}} \approx 16" \left(\frac{\sigma}{1000 \rm km.sec^{-1}}\right)^2$$

$$M(\theta) = 0.57 \times 10^{14} \ h^{-1} \ M_{\odot} \left(\frac{\theta}{30^{"}}\right) \left(\frac{\sigma}{1000 \text{km.sec}^{-1}}\right)^2$$
⁴³

Arcs et distribution de la matière noire

$$\begin{pmatrix} 1-\kappa-\gamma_{1} & -\gamma_{2} \\ -\gamma_{2} & 1-\kappa+\gamma_{1} \end{pmatrix} = \begin{pmatrix} 1-\partial_{xx}\varphi & -\partial_{xy}\varphi \\ -\partial_{xy}\varphi & 1-\partial_{yy} \end{pmatrix} \longrightarrow \qquad \mu = \frac{1}{|\det A|} = \frac{1}{|(1-\kappa^{2})-\gamma^{2}|}$$

$$2\kappa = \Delta \varphi = \Sigma / \Sigma_{crit}$$

$$\downarrow$$

$$\Sigma_{crit} = \frac{c^{2}}{4\pi G} \frac{D_{OS}}{D_{LS}D_{OL}} \approx 0.1 \left(\frac{H_{0}}{50 \text{ km/sec/Mpc}}\right) \frac{d_{os}}{d_{ts}d_{ol}} \text{ g.cm}^{-2}$$

et exprime la force de la lentille à produire des effets gravitationnels. Par exemple pour un amas de galaxies au redshift $z_L = 0.3$ et des sources amplifiées au redshift $z_S = 1$, $d_{os}/(d_{ls}d_{ol}) \approx 3$. Si l'amas est une sphère isotherme de rayon de cœur R_c et avec $M(R_c) = 2 \times 10^{14} M_{\odot}$, alors

- pour $R_c = 250$ kpc, $\Sigma_{crit} = 0.05$ g.cm⁻²,
- pour $R_c=50$ kpc, $\Sigma_{crit}=1$. g.cm⁻².

La matière noire doit être plus concentrée que la distribution des galaxies

Généralisation : distorsion gravitationnelle faible

Simulation d'une image profonde avec le HST

Généralisation : distorsion gravitationnelle faible

Le même champ mais avec une lentille gravitationnelle modélisée par une sphère isotherme: 800 km/sec, z=0.3

Matrice amplification, convergence, et cisaillement gravitationnel

$$A\left(\vec{\theta}\right) = \frac{\partial \vec{\beta}}{\partial \theta} = \left(\delta_{ij} - \frac{\partial^2 \psi\left(\vec{\theta}\right)}{\partial \theta_i \partial \theta_j}\right) = M^{-1}$$

Convergence, Shear

$$\begin{cases} \kappa = \frac{1}{2}(\psi_{,11} + \psi_{,22}) \\ \gamma_1\left(\vec{\theta}\right) = \frac{1}{2}(\psi_{,11} - \psi_{,22}) = \gamma\left(\vec{\theta}\right) \cos\left[2\varphi\left(\vec{\theta}\right)\right] \\ \gamma_2\left(\vec{\theta}\right) = \psi_{,12} = \gamma\left(\vec{\theta}\right) \sin\left[2\varphi\left(\vec{\theta}\right)\right] \end{cases}$$

On a vu que

$$\boldsymbol{\alpha}\left(\boldsymbol{\theta}\right) = \frac{1}{\pi} \int \kappa\left(\boldsymbol{\theta}'\right) \frac{\boldsymbol{\theta} - \boldsymbol{\theta}'}{|\boldsymbol{\theta} - \boldsymbol{\theta}'|^2} \, \mathrm{d}\boldsymbol{\theta}^2$$

soit de façon équivalente

$$\psi(\boldsymbol{\theta}) = \frac{1}{\pi} \int \kappa(\boldsymbol{\theta}') \ln|\boldsymbol{\theta} - \boldsymbol{\theta}'| d\theta^2$$

où la matrice d'amplification est

$$A(\boldsymbol{\theta}) = \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\theta}} = \left(\delta_{ij} - \frac{\partial^2 \psi(\boldsymbol{\theta})}{\partial \theta_i \theta_j}\right)$$

qui s'écrit avec les deux composantes du cisaillement et la convergence:

$$\left(\begin{array}{cc} 1-\kappa-\gamma_1 & -\gamma_2 \\ -\gamma_2 & 1-\kappa+\gamma_1 \end{array}\right)$$

Posons alors

$$\left(\begin{array}{cc} \gamma &= \gamma_1 + i\gamma_2 = |\gamma| e^{2i\psi} \\ \gamma_1 &= \frac{1}{2} \left(\psi_{,11} + \psi_{,22}\right) \\ \gamma_2 &= \psi_{,12} \end{array}\right)$$

on a donc:

$$\gamma = \left(rac{\partial_1^2 - \partial_2^2}{2} + i\partial_1\partial_2
ight)\psi\left(oldsymbol{ heta}
ight)$$

ce qui nous permet d'exprimer γ en fonction de κ sous la forme :

$$\gamma \left(\boldsymbol{\theta} \right) = \frac{1}{\pi} \int \kappa \left(\boldsymbol{\theta}' \right) F \left(\boldsymbol{\theta} - \boldsymbol{\theta}' \right) \, \mathrm{d} \theta^2$$

avec

$$F(\boldsymbol{\theta}) = \frac{\theta_1^2 - \theta_2^2 + 2i\theta_1\theta_2}{|\boldsymbol{\theta}|^4} = F_1(\boldsymbol{\theta}) + iF_2(\boldsymbol{\theta})$$

Dans l'espace de Fourier nous avons:

$$\kappa\left(\boldsymbol{\theta}\right) = \frac{1}{\left(2\pi\right)^2} \int \hat{\kappa}\left(\mathbf{k}\right) e^{i\mathbf{k}\cdot\boldsymbol{\theta}} \,\mathrm{d}^2k$$

et donc, l'équation (184) s'apparentant à une convolution:

$$\hat{\gamma}\left(\mathbf{k}\right) = \frac{1}{\pi}\hat{\kappa}\left(\mathbf{k}\right)\hat{F}\left(\hat{k}\right)$$

 \mathbf{avec}

$$\hat{F}(\mathbf{k}) = \pi \frac{k_1^2 - k_2^2 + 2ik_1k_2}{|\mathbf{k}|^2}$$

Reconstruction du champ de matière à partir du champ de cisaillement

Reconstruction du champ de matière à partir du champ de cisaillement

avec

$$\hat{F}(\mathbf{k}) = \pi \frac{k_1^2 - k_2^2 + 2ik_1k_2}{|\mathbf{k}|^2}$$

Par conséquent

$$\hat{F}\left(\hat{k}\right)\hat{F}^{*}\left(\hat{k}\right)=\pi^{2}$$

d'où

$$\hat{F}^{-1}\left(\hat{k}\right) = \frac{1}{\pi^2} \hat{F}^*\left(\hat{k}\right)$$

ce qui permet d'exprimer $\hat{\kappa}$:

$$\hat{\kappa}\left(\hat{k}\right) = \frac{1}{\pi}\hat{\gamma}\left(\mathbf{k}\right)\hat{F}^{*}\left(\hat{k}\right)$$

qui, en s'inversant donne la construction du champ de $\kappa:$

$$\kappa(\boldsymbol{\theta}) = \frac{1}{\pi} \int \hat{F}^* \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right) \gamma\left(\boldsymbol{\theta}'\right) \, \mathrm{d}\theta^2 + \kappa_0$$

Où la partie réelle est le champ de matière.

$$= (a^2-b^2)/(a^2+b^2)$$

Application pratique:

$$\Sigma(\boldsymbol{\theta}) - \Sigma_0 = \Sigma_{critic} \frac{1}{\pi} a^2 \sum_{i,j} \Re \left(\hat{F}^* \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{i,j} \right) \bar{\epsilon} \left(\boldsymbol{\theta}_{i,j} \right) \right)$$

où a est la distance de séparation entre les points de la grille.

*** Dégénérescence intrinsèque

Ortientation des sources isotrope:

« Weak lensing »: $\delta \sim 2\gamma = \langle \epsilon_{\text{Shear}} \rangle_{\theta} + \text{bruit}^{53}$

Détection de potentiels gravitationnels en aveugle: « voir » la matière noire

VLT I-band Image: 36 mn exposure

Dark Matter reconstruction

Comment prouver que la distribution de matière invisible est la bonne??

Carte de matière noire reconstruite par le « weak lensing » avec les données du HST pour le projet COSMOS

Comment prouver que la distribution de matière invisible est la bonne??

Cosmos: carte HST

Détermination des paramètres cosmologiques

Comparaison des méthodes de mesure des masses

Image HST: arc gravitationnel

Image X Chandra 57

Détermination des paramètres cosmologiques

Comparaison des méthodes de mesure des masses

Amas de galaxies MS1358+6254

Comparaison X-lensing

Abell 2390

Exemple: Cl0024+1654 z=0.55

Exemple: Cl0024+1654 z=0.55

Exemple: Cl0024+1654 z=0.55

Gaz X

Matière noire

Lentille gravitationnelle et masse des halos galactique: le Galaxy-Galaxy lensing

Distorsion statistique des galaxies d'arrière-plan par les halos de matière noire des galaxies d'avant plan

Galaxy-Galaxy lensing

Cisaillement tangentiel moven

Méthode:

- Mesurer des composantes tangentielles des ellipticité relativement au centre de chaque galaxie en avant-plan

- Calculer les moyennes dans des anneaux sur des millions de galaxies

-- Comparer aux prédictions des modèles de halos galactieus

Galaxy-Galaxy lensing avec le CFHTLS

- Ajustement avec une sphère isotherme singulière SIS :dispersion de vitesse de 132 +/- 10 km/s

- Ajustement avec un profil "NFW" r₂₀₀ = 150 h⁻¹kpc

Profil radial de la distribution de masse des halos des galaxies brillantes rouges dans le SDSS avec le galaxy-galaxy lensing

Densité relative des composantes

Composante/méthode	<i>M/L</i>	échelle	Ω
Voisinage solaire	5	1 kpc	0.003
Cœur des elliptiques	10	2 kpc	0.007
Analyse virielle des elliptiques	30	10 kpc	0.02
Galaxies spirales	30	10 kpc	0.02
Groupes de galaxies	200	500 kpc	0.10-0.20
Amas de galaxies	300	1 Mpc	0.15-0.35
Gaz intergalactique			0.0004-0.002
Abondance de baryon			0.01-0.05
СМВ			0.00002
Chute sur Virgo		15 Mpc	0.1-0.4
Champs de vitesse		20 Mpc	>0.5

Bilan total 5-10 <M/L < 200 -400 $\rightarrow 0.1 < \Omega_0 < 0.4$

Détermination des paramètres cosmologiques

Mouvement à grande échelle des galaxies:

- Les mouvements des galaxies sont engendrés par les champs de gravité
- La composante tangentielle de la vitesse décroît comme 1/R(t)
- Le champ de vitesse est donc finalement un champ potentiel uniquement de composante radiale

$$\boldsymbol{v}(\boldsymbol{x}) = \frac{H_0 f(\Omega)}{4\pi} \int \frac{\delta(\boldsymbol{x}) (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} \mathrm{d}\boldsymbol{x}'$$

$$f \approx \Omega_m^{0.6} + \frac{\Omega_\lambda}{70} \left(1 + \frac{\Omega_m}{2} \right)$$

Détermination des paramètres cosmologiques

$$v(x) = \frac{H_0 f(\Omega)}{4\pi} \int \frac{\delta(x) (x - x')}{|x - x'|^3} dx'$$

Mesuré Déduit si on connaît $\rho \leftrightarrow \phi$

On déduit dont un champ de densité de matière, puis $f(\Omega)$

$$f \approx \Omega_m^{0.6} + \frac{\Omega_\lambda}{70} \left(1 + \frac{\Omega_m}{2}\right)$$

n_g

Information dégénérée : $\Omega^{0.6}/b \sim 0.6 - 1.2$

M/L des systèmes

Détermination des paramètres cosmologiques: origine des anisotropies primaires du CMB

 Les perturbations gravitationnelles (effet Sachs-Wolfe). Elles sont produites à l'émission de photons piégés dans des régions denses de la surface de dernière diffusion. Ces photons subissent un effet de décalage spectral gravitationnel pour s'extraire du champ de gravité des régions denses, ce qui produit une variation de température du corps noir:

$$\frac{\delta T}{T} = \frac{\Phi}{3c^2} \ . \tag{357}$$

On comprend que ce phénomène dépende des paramètres Ω_m et Ω_{Λ} puisqu'il dépend des fluctuations du champ de densité (cf cours E. Audit)

2. Les perturbations de vitesse (ou Doppler) produites par les mouvements du plamas à la surface de dernière diffusion. Elles engendrent des fluctuations de la forme

$$\frac{\delta T}{T} = \frac{\delta v}{c} \tag{358}$$

et enfin

3. les perturbations adiabatiques produites par la compression du champ de rayonnement dans les régions de haute densité qui accroît sa température. L'accroissement de température retarde localement la recombinaison, qui se produit donc à un décalage spectral plus faible. La fluctuation de température est directement

$$\frac{\delta T}{T} = \frac{\delta \rho}{\rho} = -\frac{\delta z}{1+z} \ . \tag{359}$$

Les trois effets n'affectent pas les mêmes échelles. L'effet Sachs-Wolfe perturbent les grandes échelles angulaires, les effets Doppler et adiabatiques les échelles intermédiaires. La mesure des fluctuations selon les échelles permet donc en principe de contraindre les modèles cosmologiques.

$$\frac{\Delta T}{T} = \sum_{lm} a_{lm} Y_{lm} \left(\theta, \phi\right)$$

Décomposition des anisotropies en multipoles

$$\frac{\Delta T}{T} = \sum_{lm} a_{lm} Y_{lm} \left(\theta, \phi\right)$$

$$T\left(\theta\right) = T_0 \left(1 - \frac{v^2}{c^2}\right)^{-1/2} \left(1 + \frac{v}{c} \cos\theta\right)$$

$$C_l = \frac{1}{2\pi} \left(\frac{H_0}{c} \right)^4 \int_0^\infty \ \frac{P(k)}{k^2} j_l^2 \left(2ck/H_0 \right) \ \mathrm{d}k \ ,$$

Dépendence des C_I du CMB

Dépendence des C_/ du CMB

1^{er} pic:

 Dépend principalement de la courbure: une courbure plus faible déplace le pic vers des plus grands / (petites échelles)

2^{ième} pic:

 Dépend principalement de l'abondance des baryons et du rapport baryon/photon

Les autres pics:

Dépendent principalement de Ω_m

Dépendence des C_I du CMB

Difficultés:

contaminations du signal cosmologique nettoyage pas l'analyse multi-longueur d'onde

WMAP-1

Les observations CMB éliminent un grand nombre de modèles cosmologiques!

Description	Symbole	Valeur
	1	o =o±0.04
Paramètre de Hubble	h	$0.73_{-0.03}^{+0.03}$
Densité totale	Ω_{tot}	$1.003_{-0.017}^{+0.017}$
Equation d'état de l'énergie sombre	w	$-0.97_{-0.09}^{+0.01}$ (95% CL)
Densité d'énergie du vide	Ω_{Λ}	$0.76_{-0.06}^{+0.04}$
Densité de baryon	$\Omega_b h^2$	$0.0223_{-0.009}^{+0.001}$
Densité de baryon	Ω_b	$0.042^{+0.003}_{-0.005}$
Densité de matière	$\Omega_m h^2$	$0.127_{-0.009}^{+0.007}$
Densité de matière	Ω_m	$0.24^{+0.03}_{-0.04}$
Densité de matière noire	$\Omega_{dm}h^2$	$0.105^{+0.007}_{-0.010}$
Densité de matière noire	Ω_{dm}	$0.20_{-0.04}^{+0.02}$
Densité de neutrino légers	$\Omega_{\nu}h^2$	< 0.007 (95% CL)
Densité de neutrino légers	Ω_{ν}	< 0.014 (95% CL)
Temperature du CMB (K) (de COBE)	$T_{\rm cmb}$	2.725 ± 0.001
Densité de photons CMB (cm^{-3}) (de COBE)	n_{γ}	410.5 ± 0.5
Densité de rayonnement	$\Omega_{\gamma}h^2$	$(2.471 \pm 0.004) \times 10^{-5}$
Densité de rayonnement	Ω_{γ}	$(4.6 \pm 0.5) \times 10^{-5}$
Rapport baryon-sur-photon	$\eta = n_b/n_\gamma$	$4.7 \times 10^{-10} < \eta < 6.5 \times 10^{-10}$
Densité de baryon (cm^{-3})	n_b	$1.9 \times 10^{-7} < n_b < 2.5 \times 10^{-7}$
Fluctuation d'amplitude dans $8h^{-1}$ Mpc	σ_8	$0.74_{-0.05}^{=/0.5}$
Normalisation du spectre de puissance	A	$0.68^{+0.04}_{-0.06}$
$(a k_0 = 0.05 \text{ Mpc}^{-1})$		-0.06
Indice spectral scalaire (à $k_0 = 0.05 \text{ Mpc}^{-1}$)	n_{s}	$0.951^{+0.015}_{-0.010}$
Pente de l'indice spectral (à $k_0 = 0.05 \text{ Mpc}^{-1}$)	$dn_s/d\ln k$	-0.055 + 0.029
Rapport tenseur-sur-scalaire (à $k_0 = 0.002 \text{ Mpc}^{-1}$)	r = T/S	< 0.55 (95% CL)
Redshift du decouplage	Zdec	1089 ± 1
Epaiseur du decouplage (FWHM)	Δz_{dec}	195 ± 2
Age de l'univers (Gyr)	t_0	$13.7^{+0.1}_{-0.2}$
Age au decouplage (kvr)	tdec	379^{+8}
Age à la réionisation (Myr. 95% CL))	t_r	
Durée du decouplage (kyr)	Δt_{dec}	$118^{+}3_{-2}$
Redshift de l'égalité matière-énergie	Zog	3233^{+194}_{-10}
Profondeur optique à la réionisation	$\tau \sim eq$	0.09 ± 0.03
Redshift de la réionisation (95% CL)	Z.,	≈ 11
Horizon accoustique au decouplage (°)	$\hat{\theta}_{A}$	0.598 ± 0.002
Distance diamètre angulaire du découplage (Gpc)	d s	14.0 ^{+0.2}
Echelle accoustique $(l_A \approx \pi/\theta_A)$	l A	301+1
Horizon accoustique au découplage (Mpc) $(l_A \approx \pi/\theta_A)$	r_s	147 ± 2

Paramètres cosmologiques avec WMAP3+COBE

Description	Symbole	Valeur
Paramètra da Hubbla	h	0.72+0.04
Densité totale	0	$1.003^{+0.013}$
Equation d'état de l'énergie sombre	3 Ltot	$-0.97^{\pm0.07}$ (95% CL)
Densité d'énergie du vide	0.	0.76+0.04
Densité de berven	0.12	0.0222+0.007
Densité de baryon	0.	$0.0223_{-0.009}$ $0.042^{+0.003}$
Densité de matière	$O h^2$	$0.042_{-0.005}$ 0.127 ^{+0.007}
Densité de matière	O	$0.121_{-0.009}$ $0.24^{+0.03}$
Densité de matière noire	O, h^2	$0.105^{+0.007}$
Densité de matière noire	O.	$0.103_{-0.010}$ $0.20^{+0.02}$
Densité de neutrino légers	$O h^2$	< 0.007 (05% CL)
Densité de neutrino légers	O	< 0.001 (95% CL)
Temperature du CMB (K) (de COBE)	T,	2725 ± 0.001
Densité de photons CMB (cm^{-3}) (de COBE)	1 cmb	410 5+0 5
Densité de ravonnement	Ωh^2	$(2.471 \pm 0.004) \times 10^{-5}$
Densité de rayonnement	Ω_{γ}	$(4.6 \pm 0.5) \times 10^{-5}$
Bapport baryon-sur-photon	$n = n_{\rm L}/n_{\rm c}$	$4.7 \times 10^{-10} < n < 6.5 \times 10^{-10}$
Densité de baryon (cm^{-3})	n.	$1.9 \times 10^{-7} < n_b < 2.5 \times 10^{-7}$
Fluctuation d'amplitude dans $8h^{-1}$ Mpc	<u>л</u> е	$0.74^{=/0.5}$
Normalisation du spectre de puissance	A	$0.68^{+0.04}_{-0.04}$
$(a k_0 = 0.05 \text{ Mpc}^{-1})$		0.00-0.06
Indice spectral scalaire (à $k_0 = 0.05 \text{ Mpc}^{-1}$)	n	$0.951^{+0.015}_{-0.010}$
Pente de l'indice spectral (à $k_0 = 0.05 \text{ Mpc}^{-1}$)	$\frac{dn_s}{d\ln k}$	$-0.055^{+0.029}_{-0.029}$
Rapport tenseur-sur-scalaire (à $k_0 = 0.002 \text{ Mpc}^{-1}$)	r = T/S	< 0.55 (95% CL)
Redshift du decouplage	Zdee	1089 ± 1
Epaiseur du decouplage (FWHM)	Δz_{dec}	195 ± 2
Age de l'univers (Gyr)	t_0	$13.7^{+0.1}_{-0.2}$
Age au decouplage (kyr)	t_{dec}	379_7
Age à la réionisation (Myr, 95% CL))	t_r	-
Durée du decouplage (kyr)	Δt_{dec}	$118^{+}3_{-2}$
Redshift de l'égalité matière-énergie	z_{ea}	3233^{+194}_{-210}
Profondeur optique à la réionisation	τ	0.09 ± 0.03
Redshift de la réionisation (95% CL)	z_r	≈ 11
Horizon accoustique au decouplage (°)	θ_A	$0.598 {\pm} 0.002$
Distance diamètre angulaire du découplage (Gpc)	d_A	$14.0_{-0.3}^{+0.2}$
Echelle accoustique $(l_A \approx \pi/\theta_A)$	ℓ_A	301 ± 1
Horizon accoustique au découplage (Mpc) $(l_A \approx \pi/\theta_A)$	r_s	147 ± 2

Totalement indépendant des analyses par la nucléosynthèse primodiale

Paramètres cosmologiques avec WMAP3+COBE

WMAP-1

et

WMAP-5

WMAP-3					
Description	Symbole	Valeur			
Paramètre de Hubble	h	$0.73^{+0.04}_{-0.02}$	Course have la		Walawa WMAD 5 and
Densité totale	Ω_{tot}	1.003 + 0.013	Symbole		valeur wMAP-5 seul
Equation d'état de l'énergie sombre	w	$-0.97^{+0.07}_{-0.00}$ (95% CL)	h		0 710+0.026
Densité d'énergie du vide	$\overline{\Omega}_{\Lambda}$	$0.76^{+0.04}_{-0.04}$	<i>n</i>		$0.719_{-0.027}$ 1.000 $^{+0.100}$
Densité de barvon	$\Omega_b h^2$	$0.0223^{+0.007}_{-0.000}$	Mot	onstant)	$1.099_{-0.085}$ 1.06 $^{\pm 0.41}$
Densité de baryon	Ω_b	$0.042^{+0.003}_{-0.002}$	w (suppose of O, h^2	Justant)	$-1.00_{-0.42}$ 0.02273 \pm 0.00062
Densité de matière	$\Omega_m h^2$	$0.127^{+0.005}_{-0.000}$	01		0.02213 ± 0.00002 0.0441 ±0.0030
Densité de matière	Ω_m	$0.24^{+0.03}_{-0.04}$	$\Omega_{J} h^2$		0.1099 ± 0.0062
Densité de matière noire	$\Omega_{dm}h^2$	0.105 + 0.007 0.105 + 0.010	Ω_{dm}		0.214 ± 0.027
Densité de matière noire	Ω_{dm}	$0.20^{+0.02}_{-0.04}$	Ω_{Λ}		$0.742 {\pm} 0.030$
Densité de neutrino légers	$\Omega_{\nu}h^2$	< 0.007 (95% CL)	σ_8		$0.796 {\pm} 0.036$
Densité de neutrino légers	Ω_{ν}	< 0.014 (95% CL)	n_s		$0.963^{+0.014}_{-0.015}$
Temperature du CMB (K) (de COBE)	$T_{\rm cmb}$	2.725 ± 0.001	t_0		$13.69{\pm}0.13\times10^9$ ans
Densité de photons CMB (cm^{-3}) (de COBE)	n_{γ}	$410.5 {\pm} 0.5$	z_{eq}		3176^{+151}_{-150}
Densité de rayonnement	$\Omega_{\gamma}^{\prime}h^{2}$	$(2.471 \pm 0.004) \times 10^{-5}$	$d_A(z_{eq})$		14279^{+188}_{-191} Mpc
Densité de rayonnement	Ω_{γ}	$(4.6 \pm 0.5) \times 10^{-5}$	z_{dec}		1090.51 ± 0.95
Rapport baryon-sur-photon	$\eta = n_b/n_\gamma$	$4.7 \times 10^{-10} < \eta < 6.5 \times 10^{-10}$	$d_A(z_{dec})$		14115^{+188}_{-191} Mpc
Densité de baryon (cm^{-3})	n_b	$1.9 \times 10^{-7} < n_b < 2.5 \times 10^{-7}$	t_{dec}		380081^{+5845}_{-5841} ans
Fluctuation d'amplitude dans $8h^{-1}$ Mpc	σ_8	$0.74_{-0.05}^{=/0.5}$	treionis		$427^{+88}_{-65} \times 10^6$ ans
Normalisation du spectre de puissance	A	$0.68^{+0.04}_{-0.06}$	r = T/S (à k	$_0 = 0.002 \text{ Mpc}^{-1}$	< 0.43 (95% C.L.)
$(a k_0 = 0.05 \text{ Mpc}^{-1})$		-0.00	$dn_s/d\ln k$ (a	$k_0 = 0.002 \text{ Mpc}^{-1}$	-0.037 ± 0.028
Indice spectral scalaire (à $k_0 = 0.05 \text{ Mpc}^{-1}$)	n_s	$0.951^{+0.015}_{-0.019}$	$\Omega_{\nu}h^{2}$		< 0.014 (95% CL) 1.2 eV (05% CL)
Pente de l'indice spectral (à $k_0 = 0.05 \text{ Mpc}^{-1}$)	$dn_s/d\ln k$	$-0.055_{-0.035}^{+0.029}$	$\sum_{N} m_{\nu}$ (masse	s neutrinos)	1.3 eV (95% CL)
Rapport tenseur-sur-scalaire (à $k_0 = 0.002 \text{ Mpc}^{-1}$)	r = T/S	< 0.55 (95% CL)	τ_{veff}		> 2.3 0.087 \pm 0.017
Redshift du decouplage	z_{dec}	1089 ± 1	r (reionis)		11.0 ± 1.4
Epaiseur du decouplage (FWHM)	Δz_{dec}	195 ± 2	2(100003)		11.0±1.4
Age de l'univers (Gyr)	t_0	$13.7^{+0.1}_{-0.2}$			
Age au decouplage (kyr)	t_{dec}	379_{-7}^{+8}			
Age à la réionisation (Myr, 95% CL))	t_r	-			
Durée du decouplage (kyr)	Δt_{dec}	$118^{+}3_{-2}$			
Redshift de l'égalité matière-énergie	z_{eq}	3233_{-210}^{+194}			
Profondeur optique à la réionisation	τ	$0.09 {\pm} 0.03$			
Redshift de la réionisation $(95\% \text{ CL})$	z_r	≈ 11			
Horizon accoustique au decouplage (°)	$ heta_A$	0.598 ± 0.002			
Distance diamètre angulaire du découplage (Gpc)	d_A	$14.0_{-0.3}^{+0.2}$			0.0
Echelle accoustique $(l_A \approx \pi/\theta_A)$	ℓ_A	301 ± 1			90
Horizon accoustique au découplage (Mpc) $(l_A \approx \pi/\theta_A)$) r_s	147 ± 2			

Forme et évolution du spectre de puissance de la matière noire:

Effets de distorsion gravitationnelle faible cosmologique (cosmic shear)

- Sondage et reconstruction des halos de matière noire à toutes les échelles;
- Détection et mesure de masse des amas de galaxies;
- Mesure du spectre:
 P(k)=A (ou σ₈) kⁿ

$$\boldsymbol{\alpha}\left(\boldsymbol{\theta},w\right) = \frac{\delta\boldsymbol{x}\left(\boldsymbol{\theta},w\right)}{r_{k}\left(w\right)} = \frac{2}{c^{2}} \int_{0}^{w} \mathrm{d}w' \, \frac{r_{k}\left(w-w'\right)}{r_{k}\left(w\right)} \boldsymbol{\nabla}_{\perp} \Phi\left[r_{k}\left(w'\right)\boldsymbol{\theta},w'\right]$$

Effets de distorsion gravitationnelle faible cosmologique (cosmic shear)

$$\boldsymbol{\alpha}\left(\boldsymbol{\theta},w\right) = \frac{\delta \boldsymbol{x}\left(\boldsymbol{\theta},w\right)}{r_{k}\left(w\right)} = \frac{2}{c^{2}} \int_{0}^{w} dw' \frac{r_{k}\left(w-w'\right)}{r_{k}\left(w\right)} \boldsymbol{\nabla}_{\perp} \Phi\left[r_{k}\left(w'\right)\boldsymbol{\theta},w'\right] .$$

$$\mathbf{\hat{\beta}}_{(w)} = \frac{\mathcal{I}_{(w)}}{r_{k}\left(w\right)} \mathbf{\hat{\beta}}_{(w)} \mathbf{\hat{\beta}}_{(w$$

 $R^{o}(t)\rho_{c}$

 $8\pi G R(t)$

)2

Effets de distorsion gravitationnelle faible cosmologique (cosmic shear)

$$\Delta \Phi = 4\pi G R^2(t) \bar{\rho} \, \delta = 4\pi G R^2(t) \frac{\bar{\rho}_0}{R^3(t)\rho_c} \rho_c \, \delta = 4\pi G R^2(t) \Omega_0 \, \frac{3H_0^2}{8\pi G} \frac{1}{R(t)} \delta$$

$$\Delta \Phi = \frac{3H_0^2}{R(t)} \Omega_0 \, \delta$$

$$\kappa^{(1)}\left(\boldsymbol{\theta}, z\right) = \frac{3}{2} \left(\frac{H_0}{c}\right)^2 \Omega_0 \, \int_0^z \frac{\mathrm{d}z}{(1+z) H\left(z\right)} \frac{d_A\left(z', z\right) d_A\left(z'\right)}{d_A\left(z\right)} \delta^{(1)}_{mass}\left(\boldsymbol{\theta}, z\right)$$

Propriétés statistiques de la convergence et du cisaillement engendrés par les grandes structures: Effets de distorsion gravitationnelle faible cosmologique (cosmic shear)

relations avec les paramètres cosmologiques

$$\begin{split} & \langle \kappa^2(\theta) \rangle^{1/2} \approx 0.01 \ \sigma_8 \Omega^{0.8} \left(\frac{\theta}{1 \text{deg.}}\right)^{-\frac{n+2}{2}} \begin{array}{c} 0.75 \\ z_s \\ & z_s \\ & \sigma_8^2 = \int d^3 k \ P(k) \ W^2(kR_8) \\ & \sigma_8^2 = \int d^3 k \ P(k) \ W^2(kR_8) \\ & \text{Ecart à la Gaussianité} \\ \end{split}$$

$$P(k) \sim \sigma_8 k^n$$

 σ_8 = carré de la moyenne d'une perturbation de densité (contraste) dans une sphère de R_8 = 8 h^{-1} Mpc 94

Propriétés statistiques de la convergence:

Effets de distorsion gravitationnelle faible cosmologique (cosmic shear)

wavenumber log(k)

0₈ la normalisation du spectre de puissance à partir des observables

log(P(k))

log(P(k))

Propriétés statistiques de la convergence et du cisaillement engendrés par les grandes structures: l'instabilite gravitationnelle semble une hypothèse solide

$$\Theta \sigma^2_{\gamma}(\theta) = <\gamma^2 >$$

Courbes noires:

Prédictions théoriques pour un modèle d'univers dominé par de la matière noire et où les structures croissent par instabilité gravitationnelle

CFHTLS: constraintes sur Ω_m - σ_8

Wide avec WMAP3 $\Omega_m = 0.248 + -0.019$ $\sigma_8 = 0.771 + -0.029$

Wide surface effective : 37 deg^2_{98}

0

-0.7%

large

230

100'

medium

small scales

10'

Angular scale (arc minutes)

•
$$\langle \kappa^{2}(\theta) \rangle^{1/2} \approx 0.01 \ \sigma_{8} \Omega^{0.8} \left(\frac{\theta}{1 \text{ deg.}}\right)^{-\frac{n+2}{2}} z_{s}^{0.78}$$

• $\langle \kappa^{2}(\theta) \rangle = \langle \gamma^{2}(\theta) \rangle$

0.8

1.0

11

0.7

0.6

0.5

0.2

0.4

0.6

Ωm (matter density)

Le relevé HST COSMOS cosmic shear sur différents plans en redshift : P(k,z)

Le relevé HST COSMOS La structuration 3D de la matière noire

Détermination des paramètres cosmologiques Abondance des amas de galaxies

Les fluctuations croissent moins vite dans un univers plat à constante cosmologique non nulle

Formation des structures et normalisation du spectre

Détermination des paramètres cosmologiques Abondance des amas de galaxies

Les fluctuations croissent moins vite dans un univers à constante cosmologique positive

Pour un nombre d'amas fixé aujourd'hui, on prédit donc plus d'amas à grand z pour un univers plat à constante cosmologique non nulle

Paramètres cosmologiques :

> Analyse multi-sondes et synthèses

Paramètres cosmologiques : Analyse multi-sondes et synthèses

Symbole	Valeur WMAP-5 seul	Valeur WMAP-5+BAO+SN
h	$0.719^{+0.026}_{-0.027}$	$0.701 \pm +0.013$
Ω_{tot}	$1.099^{+0.100}_{-0.085}$	1.0052 ± 0.064
w (supposé constant)	$-1.06^{+0.41}_{-0.42}$	$-0.972^{+0.061}_{-0.060}$
$\Omega_b h^2$	0.02273 ± 0.00062	0.02265 ± 0.00059
Ω_b	$0.0441 {\pm} 0.0030$	0.0462 ± 0.0015
$\Omega_{dm}h^2$	$0.1099 {\pm} 0.0062$	0.1143 ± 0.0034
Ω_{dm}	$0.214{\pm}0.027$	$0.233 {\pm} 0.013$
Ω_{Λ}	$0.742 {\pm} 0.030$	0.721 ± 0.015
σ_8	$0.796 {\pm} 0.036$	0.817 ± 0.026
n_s	$0.963^{+0.014}_{-0.015}$	$0.960^{+0.014}_{-0.015}$
t_0	$13.69 \pm 0.13 \times 10^9$ ans	$13.73 \pm 0.12 \times 10^9$ ans
z_{eq}	3176^{+151}_{-150}	3280^{+88}_{-89}
$d_A(z_{eq})$	14279^{+188}_{-191} Mpc	14172^{+141}_{-139} Mpc
Zdec	$1090.51 {\pm} 0.95$	$1091.00_{-139}^{+0.72}$
$d_A(z_{dec})$	14115^{+188}_{-191} Mpc	14006^{+142}_{-141} Mpc
t_{dec}	380081^{+5843}_{-5841} ans	375938_{-3115}^{+3148} ans
$t_{reionis}$	$427^{+88}_{-65} \times 10^6$ ans	$432^{+90}_{-67} \times 10^6$ ans
$r = T/S$ (à $k_0 = 0.002 \text{ Mpc}^{-1}$)	< 0.43 (95% C.L.)	< 0.20 (95% C.L.)
$dn_s/d\ln k$ (à $k_0 = 0.002 \text{ Mpc}^{-1}$)	-0.037 ± 0.028	$-0.032^{+0.021}_{-0.020}$
$\Omega_{\nu}h^2$	< 0.014 (95% CL)	< 0.0065 (95% CL)
$\sum m_{\nu}$ (masses neutrinos)	1.3 eV (95% CL)	0.61 eV (95% CL)
$N_{\nu_{eff}}$	> 2.3	4.4 ± 1.5
$\tau(reionis)$	$0.087 {\pm} 0.017$	$0.084 {\pm} 0.016$
z(reionis)	11.0 ± 1.4	10.8 ± 1.4

Forme du spectre de fluctuation de densité et paramètres cosmologiques: histoire de la formation des structures

Forme du spectre et paramètres cosmologiques:

histoire de la formation des structures

Reconstruction 3-D du spectre

Reconstruction 3-D du spectre

Reconstruction 3-D du spectre et nature de la matière noire

Propriété de l'énergie sombre

Origine du problème: l'accélération de l'expansion de l'univers

Inexplicable sans évoquer une nouvelle composante

L'univers avec énergie sombre

Modifie le taux d'expansion de l'univers

$$H^2 = \frac{8\pi G}{3} \left(\rho_m + \rho_X\right)$$

$$H^{2}(z) = H_{0}^{2} \left[\Omega_{m} \left(1+z \right)^{3} + \Omega_{X} \exp \left[3 \int_{0}^{z} \left(1+w\left(z \right) \right) d\ln\left(1+z \right) \right] \right]$$

L'univers avec énergie sombre

 Modifie le taux de croissance des structures

$$a = \frac{1}{1+z}$$
; $g(a) = \frac{D(a)}{a}$

D(a) est le taux de croissance normalisé à l'unité aujourd'hui. Pour la période dominée par la matière D(a)=a

$$\frac{d^2 g}{d \ln a^2} + \frac{1}{2} \left[5 - 3w \left(a \right) \Omega_X \left(a \right) \right] \frac{d g}{d \ln a} + \frac{3}{2} \left[1 - w \left(a \right) \right] \Omega_X \left(a \right) g = 0$$

Un univers avec énergie sombre

Effet de l'énergie sur le spectre de puissance

Nature et caractérisation

- Une description simple $P=w \rho$ Constante cosmologique w = -1
- Une nouvelle physique:
 - nouvelle composante de nature inconnue: équation d'etat (effective) à déterminer, pouvant dépendre du temps :
 - $w(z) = P(z) / \rho(z)$?
 - *e.g.* quintessence, k-essence,
 - ou bien la relativité générale est incorrecte?
- Comment sonder ses propriétés et sa nature?

Sondes de l'énergie sombre

- Expansion H(z)
 - Chandelles standards
 - Supernovae SNIa : distance et luminosité
 - Echelles standards
 - Position des pics acoustiques dans le CMB : *distances angulaires*
 - Oscillations acoustiques des baryons (BAO) : distances angulaires
 - Tomographie par corrélation croisée des effets de lentille gravitationnelle : distances angulaires
 - Tests d'Alcock et Paczynski : *longueur transverse = longueur radiale*
 - « Atomes standards »
 - dz/dt (déplacement des raies atomiques): variation temporelle
- Taux de croissance des structures g(z)
 - Comptage des amas de galaxies : volumes + taux de croissance
 - Cosmic shear simple ou avec tomographie (WL) : distances angulaires + taux de croissances
 - CMB polarisation et effet Sachs Wolfe intégré (ISW) : taux de croissance

118

Corrélation croisée de l'effet Sachs Wolfe intégré avec les grandes structures: *taux de croissance*

Sondes de l'énergie sombre: Supernovae SNIa

- Principe : la luminosité au maximum et la forme de la courbe de décroissance de la luminosité sont identiques pour toutes les SNIa
 - La différence de luminosité apparente entre les SNIa n'est qu 'un effet de distance:
 - La distance d'une SNIa dépend de l'expansion de l'univers
 - $D_{SNI}a(z) \rightarrow H(z)$

Accélération et énergie sombre avec les relevés SNIa:

SNLS (2006) + ESSENCE (2007)

Le CMB distance angulaire

- Principe : comportements des fluctuations de densité de la matière noire et des baryons+photons
 - Matière noire: avant et après la recombinaision:
 - Pics de fluctuations de densité de matière noire croissent: gravité
 - Baryons + Photons: avant la recombinaison
 - Les baryons et les photons restent couplés
 - Univers ionisé: la pression des photons compense la gravitation.
 - Perturbations oscillent sous la forme d'ondes acoustiques
 - Les ondes de densité se propagent et atteignent une distance maximale au moment ou la pression s'effondre à la recombinaison
 - Taille maximale prédite par la théorie: 150 Mpc; horizon acoustique
 - Baryons après la recombinaison
 - Les baryons se découplent des photons, la pression est nulle dans la fluctuation de baryons, elle reprend sa croissance.
 - Baryons attirent alors la matière noire: pics de densité de matière lumineuse en excès projetée sur le ciel (galaxies).

Sondes de l'énergie sombre: l'effet Sachs-Wolfe intégré

- Principe : un photon qui traverse un puits de potentiel gagne de l'énergie en « tombant » et en perd en «s'échappant »
 - Mais si la profondeur du puits varie sur une échelle de temps plus courte que le temps de traversée:
 - Les photons peuvent perdre ou gagner: blue shift ou red shift
 - Photons du CMB : effet Sachs-Wolfe intégré (ISW)
 - Cas des fluctuations de densité
 - Fluctuations de densité croissent selon le contenu en matière-énergie
 - Taux de croissance : amortie par l'expansion: l'effet peut donc être nul. Univers Λ: expansion est plus rapide que taux de croissance: blue shift
 - ISW présent que dans univers non-plats ou plats avec énergie sombre
 - Donc si l'univers est plat: détecter un ISW = il y a de l'énergie sombre
 - Corrélation CMB + structures d'avant-plan
 - La corrélation entre les anisotropies du CMB et les pics de densité de matière d'avant-plan: voir l'ISW = mesure de l'énergie sombre

Sondes de l'énergie sombre: l'effet Sachs-Wolfe intégré

Corrélations CMB et distribution des potentiels: ISW détecté à 3-sigmas dans 3 analyses indépendantes.

Sondes de l'énergie sombre: distorsions gravitationnelles cosmologiques

- Principe : les grandes structures de l'univers créent des effets de lentille gravitationnelle qui s'accumulent et déforment les galaxies lointaines
 - L'amplitude et la forme de la déformation des galaxies en fonction de l'échelle angulaire tracent la distribution de la matière:
 - La forme dépend du taux de croissance
 - L'observation à plusieurs redshifts (multi-plans source) montre directement le taux de croissance
 - L'effet de lentille voit la matière: aucune hypothèse n'est nécessaire sur les relations entre lumière et matière
 - L'effet dépend aussi des distances angulaires observateur-source et source-deflecteur, et de la gravitation
 - Porte donc trois informations: taux de croissance, distance et nature de la gravitation. Gros potentiel de découverte, mais dégénérescenses.

Effet statistique: carte de distorsion

Ces cartes peuvent être construites en sélectionnant plusieurs « plans sources »:

champ de distorsion gravitationnelle =

carte de la distribution de la matière noire à différents redshifts:

= Exactement g(z)

Sondes de l'énergie sombre: amas de galaxies

- Principe : les amas sont des structures dynamiques très massives mais très jeunes. En remontant le temps, le nombre d'amas doit fortement varier
 - Le nombre d'amas en fonction du redshift trace le taux de croissance des structures:
 - Il suffit de compter les amas de masse supérieure à une masse donnée et de répéter ces comptages en fonction du redshift
 - Il existe trois methodes pour mesurer ces masses
 - Dynamique des particules-galaxies dans un amas (viriel, par exemple)
 - Dynamique du gaz « X » chaud ionisé intra-amas en équilibre hydrostatique dans le potentiel de la matière noire,
 - Mesure de masse par effet de lentille gravitationnelle.

La fraction d'amas très massifs = noeuds des systèmes filamentaires: très fortement dépendante du modèle cosmologique et du redshift

Sondes de l'énergie sombre: amas de galaxies

L'évolution de la fonction de masse dépend de g(z) La fraction de baryon apparente dépend de D(z) ¹³⁹

Les meilleures sondes actuelles

Les BAO ont définitivement convaincus les plus sceptiques qu'il est pour le moment impossible d'interpréter toutes les données observationnelles sans une composante qui engendre une accélération: énergie sombre, gravitation modiféé ou autre

OU

Toutes les mesures sont fausses: systématiques?

0.6

WL

Ω_

-SN

0.7

Ω_{DE}

0.8

+LENS

CMB

0.0

0.8

Status aujourd'hui:

w=-1 en accord avec l'ensemble des données Mais largement trop imprécis pour tester les modèles d'énergie sombre en détail

Mais encore beaucoup d'incertitudes si w(z)

Comprendre et modéliser l'énergie sombre

- Quantité ?: Ω_x
- Nature : équation d'état (w), potentiel,
- Evolution?
- Deux approches:
 - Empirique, modèle indépendant avec une équation d'état effective mais une représentation en fonction du temps limitée et arbitraire
 - Physique, dépendant des modèles et donc plus limitée. Mais permet de suivre exactement l'évolution temporelle des toutes les quantités physiques

Modèle	Nature	Equation d'état/ w	Effets sur l'expansion	Paramètres sensibles
Plat + Ω_{λ}	Constante cosmologique	w = -1	$\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + (1 - \Omega_m)$	Ω_m
Ω_{λ}	Constante cosmologique	w = -1	$\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + \frac{(1 - \Omega_m - \Omega_\lambda)}{a^2} + \Omega_\lambda$	Ω_m, Ω_λ
Plat $+ w$	Energie sombre	$P = w\rho$	$\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + \frac{(1 - \Omega_m)}{a^{3(1+w)}}$	Ω_m, w
w	Energie sombre	$P = w\rho$	$\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + \frac{\Omega_x}{a^{3(1+w)}}$	Ω_m, Ω_x, w
Plat $+ w(z)$	Energie sombre	$P = w(a)\rho,$ $w(a) = w_0 + w_a(1-a)$	$\frac{\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + \frac{(1 - \Omega_m)}{\exp\left(3\int_a^1 \frac{1 + w(a')}{a'} da'\right)}$	Ω_m, w_0, w_a
DGP	Brane gravitation	-	$\frac{H^2}{H_0^2} = \frac{\Omega_k}{a^2} + \left(\sqrt{\frac{\Omega_m}{a^3} + \Omega_{rc}} + \sqrt{\Omega_{rc}}\right)^2$ $\Omega_m = 1 - \Omega_k - 2\sqrt{\Omega_{rc} (1 - \Omega_k)}$	Ω_k, Ω_{rc}
Cardassien polytropique modifié (plat)	Brane ou Matière noire en self-interaction	-	$\begin{split} \frac{H^2}{H_0^2} &= \frac{\Omega_m}{a^3} \times \\ & \left(1 + \frac{(\Omega_m^{-q} - 1)}{a^{3q(n-1)}}\right)^{\frac{1}{q}} \end{split}$	Ω_m, q, n
Gaz de Chaplygin	Gaz de Chaplygin généralisé	$P = -A\rho^{-\alpha}$ $A > 0, P > 0$	$\begin{aligned} \frac{H^2}{H_0^2} &= \frac{\Omega_k}{a^2} + \\ (1 - \Omega_k) \times \\ \left(A + \frac{(1 - A)}{a^{3(1 + \alpha)}}\right)^{\frac{1}{1 + \alpha}} \end{aligned}$	Ω_k, A, α

Les modèles d'univers avec de l'énergie sombre
Les sondes de l'énergie sombre et les modèles possibles: des familles de modèles peuvent déjà être exclues

Cosmic shear

Les contraintes actuelles au-delà de *w*=-1: Supernovae seules

- Λ = constante cosmologique
- w = w constante
- w(a)=w0 + (1-a) w1
- Ca = Cardassien
 - GCh= gaz de Chaplygin

Les contraintes actuelles au-delà de w=-1

Un vaste domaine encore possible.

L'exploration de l 'énergie sombre n'en est qu'à ses débuts.

 Modèle de quintessence : deux familles de potentiel prédits:

Ratra-Peebles $V(Q) = M^4 (Q/M_p)^{-\alpha}$,

Super GRAvité $V(Q) = M^4 (Q/M_p)^{-\alpha} \exp(Q^2/2M_p^2)$.

- Le champ scalaire Q évolue lentement dans le potentiel de l'inflation
- α et M sont deux paramètres libres

Avantage:

On peut suivre l'évolution dynamique du champ sous-jacent

Klein-Gordon

$$\ddot{Q} + 3H\dot{Q} + \frac{\mathrm{d}V}{\mathrm{d}Q} = 0,$$

Friedmann

$$H^{2} + \frac{K}{a^{2}} = \frac{8\pi G}{3} \left[\rho_{m} + \rho_{r} + \frac{\dot{Q}^{2}}{2} + V(Q) \right]$$

Et des perturbations

$$\delta \ddot{Q} + 3H\delta \dot{Q} + \left(\frac{k^2}{a^2} + \frac{\mathrm{d}^2 V}{\mathrm{d}Q^2}\right)\delta Q + S = 0$$

Avantage:

On évite une équation d'état arbitraire et une évolution temporelle très approximative, voire inappropriée

Exemple de paramétrisation inadaptée: $w(a) = w_{pivot} + w_a(a_{pivot} - a)$.

Inconvénient:

- Très difficile de falsifier un grand nombre de modèles car ce nombre est quasi-illimité.
- Il faut suivre l'évolution des perturbations de chaque modèle ce qui n'est pas possible actuellement pour toutes les classes de modèles (théorie des perturbations parfois inexistantes)
- En plus des perturbations in faut déterminer à tous pas de temps le CMB + d'autres quantité (comme le champ de convergence gravitationnel)... très long numériquement

Tester les modèles physiques

Contraintes: cosmic shear du CFHTLS, SNIa+CMB WMAP-1

Ratra-Peebles

SUGRA

Le futur :

quelles sont les meilleures sondes observationnelles de l'énergie sombre?

Sensibilité à l'énergie sombre: $w(z) = w_0 + w_a z/(1+z)$

 $\begin{array}{l} r(z) = \text{ distance comobile} \\ r(z) (1+z) = \text{ distance lumineuse} \\ r(z)/(1+z) = \text{ distance diamètre angulaire} \\ r(z)^2 H(z) = \text{ élément de volume comobile} \\ D(z), g(z) = \text{ taux de croissance} \end{array}$

Pour w

- Taux de croissance et taux d'expansion sont complémentaires.
- dg/dz semble le meilleur test

Pour w₀/w_a:

• dg/dz le meileur test: cosmic shear, amas de galaxies ?

MAIS:

- Systématiques = points critiques;
- dg/dz : erreurs plus grandes que les distances.
- dg/dz lensing dégénéré avec les distancés.

Les meilleures sondes observationnelles de l'énergie sombre

• SNIa :

<u>La mieux testée</u>, une mesure quasi-pure de H(z). Semble avoir atteint ses limites sans des procédures très fines de calibration, d'analyse des systématiques et de modèles d'explosion de SN.

• BAO:

La moins critique en termes de systématiques, sensible aux effets du biais et les effets non-linéaires. *w* au pourcent :des centaines de millions de redshifts.

Cisaillement gravitationnel (WL):

La plus prometteuse et celle qui a le plus grand potentiel exploratoire (test gravitation, multi-plan). Contrôle des effets systématiques difficile (correction distorsions non gravitationnelles, redshift des sources). Redshifts nécessaires.

• Amas de galaxies:

<u>Incertaine</u> : à quel point les effets non-linéaires et la physique interne des amas affectent les mesures? Problème: précision des mesures de masse des amas.

• ISW:

<u>Encore incertaine</u> sur sa précision potentielle et ses contaminations (poussières galactiques, sources ponctuelles, effet SZ). La cross-corrélation Planck+grands releyés semble prometteuse.

Les relevés énergie sombre 2008-2025

2000					2010					2020	
Imag	/WL	 	P:	an- STARRS	-1 -	an- STARR	S-IV	 	DUNE	SKA	
D	LS SD	CFH SS	TLS	KIDS/ /VIKIN	IG DES	Hyper- -SUPF	RIME	JD	EM		
				ATLA Pan-		TA	нзнз				
BAO				LA	MOST	Hype –SUP	RIME		DUNE	SKA	
	SD 2d	SS-I -F	Wig	Sub –FM gleZ AT SDSS- BOSS	aru- IOS D ILAS ^{/V} -III/ HETEX	ES∕ ^W ISTA CFHTL	FMOS LSS S-II??	J T	DEM SPACE		
SN		- 	ESSEN	CE		- 	ALPAC	A?			
	CFł	ITLS/SI	ILS SE	SS-II Pan -ST	DES /VIS ARRS-	TA	LSS	J	DEM		
Amas	5	 	SPT		e-	ROSIT	A	 	DUNE	XEUS	
	S	ZA A MI AI	PEX MIBA	АСТ	DE /VIS	5/ 5TA			EDGE	CON-	x
СМВ	ISW	1 1 1 1 1	WMAP3	PLAN	ск–і	ISW: WMAP	3+DESS	 			
WMA	P1	 	V ISW:	VMAP6		PLANC	K-IV	ISW:			
WMAR3+SDSS WMAP3+NVSS Planck+L\$ST dz/dt???											

156

Composante	Sous-composante	$\Omega_{sous-total}$	Ω_{total}
Energie sombre			0.72 ± 0.03
Matière noire			0.23 ± 0.03
Ondes gravitationnelles			$\leq 10^{-10}$
primordiales			
Baryons			0.045 ± 0.003
	Gaz intergalactique tiède Dont:	0.040 ± 0.003	
	1. Gaz des halos galactiques	$0.024\ {\pm}0.005$	
	2. Gaz intergalactique	$0.016\ {\pm}0.005$	
	Con inter array	0.0018 0.0007	
	Gaz intra-amas Etoilos de la sécuence	0.0018 ± 0.0007 0.00165 ± 0.00080	
	principale	0.00103 ±0.00080	
	Naines blanches	0.00036 ± 0.00008	
	Etoiles à neutrons	$0.00005\ {\pm}0.00002$	
	Trous noirs	$0.00007\ {\pm}0.00002$	
	Objets sub-stellaires	$0.00014\ \pm 0.00007$	
	Gaz HI+HeI	$0.00062\ \pm 0.00010$	
	Gaz moléculaire	$0.00016\ \pm 0.00006$	
Désidua primordiaur			0.0010 0.0005
Residus primordiaux	Revennement radio/micro ondo	$10-4.3\pm0.0$	0.0010 ± 0.0005
	cosmologique	10	
	Neutrinos	$10^{-2.9\pm0.1}$	
Rayonnement secondaire	reatinos	10	$10^{-5.7\pm0.1}$
rayonnement secondare	Ravonnement radio/micro-onde	$10^{-10.3\pm0.3}$	10
	des sources résolues		
	Rayonment infrarouge lointain	$10^{-6.1}$	
	Rayonnement optique	$10^{-5.8\pm0.2}$	
	Rayonnement X- γ	$10^{-7.9\pm0.2}$	
	Rayonnement gravitationnel	$10^{-7.6\pm0.7}$	
	des objets compacts		
Neutrinos stellaires			$10^{-5.5\pm0.5}$
Rayons cosmiques et			$10^{-8.3\pm0.5}$
champs magnétiques			

Bilan et inventaire:

le contenu en matière-énérgie de l'univers

Nature de la matière noire

- Second pic des fluctuations du fond diffus cosmologique compatible avec Ω_B de la BBN: $\Omega_B \sim 0.044$
- D'après les observations : $\Omega_{\acute{e}toile} + \Omega_{hydrogène} = 0.007$
- Masse des structures + cosmic shear compatible avec $\Omega_0 \sim 0.3$

Donc:

- Une partie des baryons pourrait être invisible
- Comme $\Omega_0 = 0.3$, l'essentiel de la matière est invisible ET non baryonique.

Existence et nature de la matière noire:

le spectre de puissance des fluctuations de densité

- Les propriétés des grandes structures
- Imposent le besoin d'une autre composante de matière que les bayons
- Ne reflètent pas celles attendues par un univers dominé des baryons ou par de la matière noire chaude.

Existence et nature de la matière noire: le spectre de puissance des fluctuations de densité

- Les propriétés des grandes structures
- Mais sont compatibles avec une composante de matière noire froide et/ou tiède

Une preuve de l'existence de la matière noire? Weak lensing + analyse X avec Chandra de deux amas de galaxies en collision

Carte émisssivité X (zones colorées) = baryons

Weak lensing (contours verts) = matière noire

Nature de la matière noire Massive Compact Halo Objects: MACHOs

Nature de la matière noire

MACHO/EROS:

Contribution
 négligeable à la
 masse du halo de la
 Galaxie.

Contribution
 négligeable à la
 matière noire

Nature de la matière noire

MACHO/EROS:

- Contribution négligeable à la masse du halo de la Galaxie.
- Contribution négligeable à la matière noire

Les neutrinos:

ils existent ! candidats matière noire chaude... Combien, combien de familles ? Quelles masses?

Contraintes actuelles: $0.0001 < \Omega_v < 0.04$

Données	Auteur	Masse des neutrinos
2dF	Elgaroy et al (2002)	$\sum m_{\nu} < 1.8 \text{ eV}$
WMAP-3+Ly α +SDSS	Seljak et al (2004)	$\sum m_{\nu} < 0.17 \text{ eV}$
WMAP-3 +BAO+SNIa	Komatsu et al (2005)	$\sum m_{\nu} < 0.67 \text{ eV}$
WMAP-3 seul	Fukugita et al (2006)	$\sum m_{\nu} < 2.0 \text{ eV}$
CMB + 2dF	Sanchez et al (2005)	$\sum m_{\nu} < 1.2 \text{ eV}$
CMB+BAO+LSS+SNIa	Goobar et al (2006)	$\sum m_{\nu} < 0.62 \text{ eV}$
WL[CFHTLS-T01+autre]+WMAP-5+SNIa	Li et al (2008)	$\sum m_{\nu} < 0.47 \text{ eV}$
WL[CFHTLS-T03]+WMAP5+SNIa	Tereno et al (2008)	$0.03 < \sum m_{\nu} < 0.54 \text{ eV}$
WL[CFHTLS-T01+autre]+SNIa+BAO+ RAG	Gong et al (2008)	$\sum m_{\nu} < 0.80 \text{ eV}$
WMAP-5 +BAO+SNIa	Komatsu et al (2008)	$\sum m_{\nu} < 0.61 \text{ eV}$
WL[CFHTLS-T03]+WMAP5+SNIa+BAO	Ichiki et al (2009)	$\sum m_{\nu} < 0.54 \text{ eV}$

Candidats matière noire froide

Candidat	Nature	catégorie	masse approximative
Jupiters	baryonique	matière noire froide	$0.001 \ \mathrm{M}_{\odot}$
Naines brunes	baryonique	matière noire froide	$0.08\text{-}0.01 \ \mathrm{M}_{\odot}$
Naines blanches	baryonique	matière noire froide	$0.1-0.5 \ { m M}_{\odot}$
Étoiles à neutrons	baryonique	matière noire froide	$0.1 \ \mathrm{M}_{\odot}$
Trous noirs stellaires	baryonique	matière noire froide	$\approx 1. M_{\odot}$
Trous noirs massifs	baryonique	matière noire froide	$10^{5-6} M_{\odot}$
Trous noirs primordiaux	baryonique	matière noire froide	?
Axion LSP-WIMP (e.g. neutralino)	non-baryonique non-baryonique	matière noire froide matière noire froide	10^{-5} - 10^{-3} eV 50 GeV-1 TeV
gravitino	non-baryonique	matière noire tiède	500 eV
neutrinos majorons	non-baryonique non-baryonique	matière noire chaude matière noire chaude	keV $10^{-5} eV$

Détection indirecte de WIMPS: annihilation dans le centre galactique improbable

Observations du satellite INTEGRAL janvier 2008: le centre d'emission gamma est résolu en sources multiples. Rejette l'emission par des WIMPS

Détection directe de la matière noire avec Edelweiss

- 1600 m de profondeur sous le tunnel de Fréjus
- 4m/m²/jour (10⁶ fois moins qu'à la surface)
- 1500 neutrons (>1MeV) /m²/d (activité rocheuse) ¹⁶⁹

Détection directe de la matière noire avec Edelweiss

- Mesure simultanée de la charge et de la chaleur pour chaque interaction.
 - Rapport Charge/chaleur différent pour les reculs nucléaires et électroniques
- ⇒ Discrimination événement par événement.

Détection directe de la matière noire: la recherche des WIMPS avance

CMSSM = Constrained Minimal Supersymmetric Standard Model

171

XENON, janvier 2008

Détection directe de la matière noire: mais on est encore loin....

Détection directe de la matière noire: les projets....

Détection directe de la matière noire: Les particules du modèle standard

Standard Model	particles and fields	Supersymmetric partners					
		Interactio	on eigenstates	Mass eigenstates			
Symbol	Name	Symbol	Name	Symbol	Name		
q=d,c,b,u,s,t	quark	\tilde{q}_L,\tilde{q}_R	squark	$\widetilde{q}_1,\widetilde{q}_2$	squark		
$l=e,\mu,\tau$	lepton	$ ilde{l}_L, ilde{l}_R$	slepton	$\widetilde{l}_1,\widetilde{l}_2$	slepton		
$\nu=\nu_e,\nu_\mu,\nu_\tau$	neutrino	$\tilde{\nu}$	sneutrino	$\tilde{ u}$	$\operatorname{sneutrino}$		
g	gluon	${ ilde g}_{_{-}}$	gluino	${\widetilde g}$	gluino		
W^{\pm}	W-boson	\tilde{W}^{\pm}	wino				
H^-	Higgs boson	\tilde{H}_1^-	higgsino }	$\tilde{\chi}_{1,2}^{\pm}$	chargino		
H^+	Higgs boson	\tilde{H}_2^+	higgsino				
В	B-field	\tilde{B}^{-}	bino				
W^3	W^3 -field	\tilde{W}^3	wino				
H_1^0	Higgs boson	rr0	himmin a	$ ilde{\chi}^0_{1,2,3,4}$	neutralino		
H_2^0	Higgs boson	\vec{H}_{1}	niggsino				
$\bar{H_3^0}$	Higgs boson	H_{2}^{0}	higgsino				

Détection directe de la matière noire: l'alternative vers le LHC et la recherche du Higgs

Exploration du Higgs le plus léger par le LHC

Détection directe de la matière noire: La recherche des WIMPS avec le LHC

176

L'histoire thermique de l'Univers

- Puisque T = T₀ (1+z), l'univers était plus chaud au début de son histoire
- La physique des particules élémentaires est bien connue jusqu'aux échelles d'énergie de ~ 1GeV. On peut donc au moins décrire l'histoire thermique jusqu'à cette période
- La physique statistique et la thermodynamique des particules élémentaires pourront être décrites par la mécanique quantique. On aura donc 2 types de particules: les bosons et les fermions
- Si les particules sont en équilibres thermodynamique et chimique, leur densité numérique et leur distribution d'énergie sont uniquement déterminées par la température (e.g. distribution de Planck). Donc en particulier la densité de rayonnement est uniquement une fonction de *T*.

L'histoire thermique de l'Univers

- Puisque $T = T_0 (1+z)$, l'univers était plus chaud au début de son histoire
- Comme $\rho_r = \rho_{0r}(1+z)^{-4}$ et $\rho_m = \rho_{0m}(1+z)^{-3}$, l'univers à eu une période dominé par la rayonnement
- Plus généralement on aura, à partir d'un certain temps:

 $\Lambda < k/R^2 < \rho_m/R^3 < \rho_r/R^4$

Et donc les équations de Friedmann peuvent se simplifier pour ne considérer que le terme radiatif.

 Un phénomène physique peut être caractérisé par une échelle de temps physique: τ ~ 1/nσv.

Pendant la période radiative: $R(t) \sim t^{1/2}$ alors que n ~ R^{-3} Donc t/t ~ R/σ

Les intéractions ne seront efficaces que pour t/T <<1

L'histoire thermique de l'Univers

- Un phénomène physique peut être caractérisé par une échelle de temps physique: τ ~ 1/nσv.
- Les intéractions ne seront efficaces que pour t/т <<1
- Mais comme R croît, l'univers passera nécessairement par une période ou cette interaction sera négligeable.
- Donc en particulier l'univers va passer par une suite d'états d 'équilibre et de déséquilibre.
- Ces étapes décrivent et construisent l'histoire thermique de l'univers et de la formation des particules et des éléments chimiques dans l'univers

La transition matière-rayonnement

Si ρ_m est la densité pendant la phase dominée par la matière et ρ_r est la densité pendant la phase dominée par le rayonnement, on a

$$\rho_m = \rho_c \Omega_m \left(1+z\right)^3$$

 \mathbf{et}

$$\rho_r = \rho_c \Omega_r \, (1+z)^4$$

La transition entre ces deux périodes se produit donc à

$$1 + z_{eq} = \frac{R_0}{R_{eq}} = \frac{\Omega_r}{\Omega_m}$$

Les observations donnent les valeurs actuelles: $\Omega_m \ge 0.2$ et $\Omega_r h^2 = 2.56 \ 10^{-5}$. Donc

$$1 + z_{eq} = 3.9 \times 10^4 \left(\Omega h^2\right)$$

correspondant à une température T_{eq}

$$T_{eq} = (1 + z_{eq}) = 1.07 \times 10^5 \left(\Omega h^2\right) K = 9.24 \left(\Omega h^2\right) eV$$

et au temps t_{eq}

$$t_{eq} = 0.4 \frac{1}{H_0} \frac{1}{\Omega^{1/2}} (1+z)^{-3/2}$$

 $_{\rm soit}$

$$t_{eq} = 1.57 \times 10^{10} \left(\Omega h^2\right)^{-1/2} \sec = 500 \left(\Omega h^2\right)^{-1/2}$$
ans
- Au fur et à mesure de l'expansion, le libre parcours moyen des photons s'accroît et donc les interactions matière-rayonnement diminuent progressivement.
- Ce découplage se produit lorsque le libre parcours moyen de photons dépasse le rayon de Hubble, c/H(t)

Le taux d'interaction photons=électrons est donné par

 $\tau_{\gamma} = n_e \sigma_T c$

où n_e est la densité numérique d'électrons libres et σ_T la section efficace de Thomson (=6.65 10^{-25} cm²).

L'équilibre des abondances des électrons libres est déterminé par l'équation de Saha. Si n_H est la densité numérique d'Hydrogène, n_p la densité numérique de protons libres et n_e la densité numérique d'électrons libres (on néglige les noyaux d'Hélium), la neutralité de charge de l'univers implique

 $n_e = n_p$

La conservation du nombre de baryons, n_B , implique

 $n_B = n_p + n_H$

À l'équilibre thermique, pour des températures inférieures à $m_i c^2$, la densité du constituant *i* est

$$n_i = g_i \left(\frac{m_i T}{2\pi}\right)^{3/2} \exp\left[\frac{\mu_i - m_i}{T}\right]$$

où i = e, p, H et μ_i est le potentiel chimique.

L'équilibre chimique

$$p + e \Longrightarrow H + \gamma$$

garantit que

$$\mu_e + \mu_p = \mu_H$$

et donc

$$n_H = \frac{g_H}{g_p g_e} n_p n_e \left(\frac{m_e T}{2\pi}\right)^{3/2} \exp\left[\frac{B}{T}\right]$$

où B est l'énergie de liaison de l'Hydrogène: $B = (m_p + m_e - m_H)c^2 = 13.6$ eV. On appelle fraction d'ionisation, la quantité

$$X_e = \frac{n_p}{n_B}$$

182

On appelle fraction d'ionisation, la quantité

$$X_e = \frac{n_p}{n_B}$$
(431)

Sachant que $g_p = g_e = 2$ et $g_H = 4$ et en posant $n_B = \eta n_{\gamma}$, on peut déterminer la fraction d'ionisation à l'équilibre, X_e^{eq} et l'exprimer sous la forme

$$\frac{1 - X_e^{eq}}{\left(X_e^{eq}\right)^2} = \frac{4\sqrt{2}\zeta(3)}{\sqrt{\pi}}\eta \left(\frac{T}{m_e}\right)^{3/2} e^{\frac{B}{T}}$$
(432)

qui est l'équation de Saha pour la fraction d'ionisation à l'équilibre. Le rapport baryons sur photons, η , est contraint par les observations:

$$\eta = 2.68 \times 10^{-8} \ \left(\Omega_B h^2\right) \tag{433}$$

Il est clair que l'équation (432) trace l'évolution de la fraction d'ionisation puisque T varie comme (1 + z). Par définition, la *(re)combinaison* est la période où 90% des électrons se sont recombinés avec les protons. Cette époque se situe à

$$z_{rec} = 1200 - 1400$$
 (434)

Par exemple, pour $z_{rec} = 1300$, on a $T_{rec} = T_0(1 + z_{rec}) = 3775 \ K = 0.308 \ \text{eV}$. Compte tenu du z_{eq} calculé dans la section précédente, on voit que la recombinaison s'est produite pendant la phase dominée par la matière. On peut donc facilement déterminer l'âge auquel s'est déroulée la recombinaison

$$t_{rec} = \frac{2}{3} \frac{1}{H_0} \left(\frac{1}{\Omega}\right)^{1/2} (1+z)^{-3/2} \tag{435}$$

soit

$$t_{rec} = 4.39 \times 10^{12} (\Omega h^2)^{-1/2} \text{ sec} = 140000 (\Omega h^2)^{-1/2} \text{ ans}$$

Il peut paraître surprenant que la recombinaison se produise à $\approx 4000 \ K$ et non pas à $\approx 150000 \ K$ correspondant à 13.6 eV. C'est une conséquence de la distribution en énergie des photons qui est très large. En fait, il suffit qu'un photon sur 10^8 ait une énergie supérieure à 13.6 eV pour avoir assez de photons ionisants.

En utilisant l'équilibre d'ionisation et le fait que la densité d'électrons libres est

$$n_e = X_e n_B = X_e \eta n_\gamma \approx 1.13 \times 10^{-5} \text{cm}^3 \ \left(\Omega_B h^2\right)$$

et que

$$\tau \approx \frac{1}{n_e \sigma_T c}$$

et enfin que l'âge de l'univers est

$$t = \left(\frac{2}{3}\right)(1+z)^{-3/2}H_0^{-1}\Omega_0^{-1/2}$$

on peut estimer la période de découplage qui correspond à $t \approx \tau$. Comme le libre parcours moyen des photons dépend de Ω_B et que l'âge de l'univers dépend de Ω , le redshift au découplage dépend donc de ces deux paramètres essentiels.

Grossièrement le découplage se produit entre z = 1100 et z = 1200 et donc

$$t_{dec} = \left(\frac{2}{3}\right) H_0^{-1} \Omega_0^{-1/2} \left(1 + z_{dec}\right)^{-3/2}$$

soit, pour z = 1100

$$t_{dec} = 5.64 \times 10^{12} \left(\Omega_0 h^2\right)^{-1/2} \text{ sec} = 180000 \left(\Omega_0 h^2\right)^{-1/2} \text{ ans}$$

On voit que l<u>e découplage se produit après la recombinaison</u>. Remarquablement, il se produit dans un tout petit intervalle en redshift. Ceci est essentiellement un effet de profondeur optique qui dépend très fortement de l'état d'ionisation (voir l'équation (303) qui décrit comment calculer cette profondeur optique). Le $\Delta z \approx 100$ est donc une véritable barrière opaque. On l'appelle la surface de dernière diffusion.

Aujourd'hui

Vie sur Terre Systeme Solaire

Formation des galaxies Effondrement gravitationnel

Recombinaison Surface de derniere diffusion Transition matiere-rayonnement Instabilite gravitationnelle

Nucleosynthese primordiale

Synthese des elements legers (Lithium, Berylium, Bore)

Transition Quark-Hadron Formation des Hadrons (protons, neutrons)

Transition Electro-faible

SU(3)xSU(2)xU(1) --> SU(3)xU(1)

Formation des Axions? WIMPS Supersymetriques?

Transition de Grande-Unification SU(5) --> SU(3)xSU(2)xU1 Baryogenese, Inflation, Monopoles Cordes cosmiques ? Ere de Planck Gravitation quantique

L'histoire thermique de l'Univers plus ou moins reconstituée