TERAPIX hardware: The next generation

Emmanuel Bertin (IAP/Obs.Paris)

Our Current Hardware

The context

• Demise of Alpha

- Rise of fast, low-cost 32bit PC-Linux servers
 - Popular, well-documented environment for years to come
 - Distributed computing made easy (clusters of PCs)
 - Typical lifespan of a competitive system is 2 years
 - Cheap 64bit machines should appear in 2002 (AMD Hammer)
- Coarse grain parallel processing (as at CFHT)
 - Maximum flexibility

Constraints on network bandwidth different from your typical "Beowulf" PC cluster

- Very high bandwidth, latency not critical
- Evaluation of custom cluster architectures is required
- Our first series of machines has just arrived! (January 2001)

Which CPU?

• Although Alpha processors are still the fastest for scientific computing, cheap competitors have almost filled the gap

Which CPU? (cont.)

- All the fastest CPUs exhibit almost similar performances (within 20%)
 - Buy the cheaper ones (AMD Athlons@1.53GHz), but buy many!!
 - Cheap architectures have some shortcomings:
 - Addressable memory space limited to 3GB in practice with 32bit CPUs
 - Limitations of x86 motherboards:
 - Slower PCI bus (32bit@33MHz = 130MB/s)
 - Less IRQs and DMA channels available
 - Do not neglect motherboard performance
 - Go for bi-processors
 - More efficient in a distributed-computing environment, even for monoprocessing (handling of system tasks e.g. I/O software layers)

Which CPUs? (cont.)

Current motherboards with AMD760MP chipset: Tyan Tiger MP and Thunder K7

Stable but modest performance

 Faster motherboards based on the new AMD760MPX chipset now available from Abit and MSI

Optimizing parallel processing

• Amdahl's law: T ()

$$T(n) = T_s + \frac{T_p}{n}$$

The efficiency of parallel processing is limited by sequential tasks

- Communication (latency, data throughput) between machines
 - Can be minimized with very coarse-grain parallelism and by limitating pixel data transfers
- Synchronization of machines (MUTEX)
 - Can be minimized by working on independent tasks/fields/channels
- Reading/writing data to a common file-server
 - Large transfer rate (high bandwidth) required if one wants to be able to initiate the processing rapidly

Gigabit (cheap) or Fiber Channel (expensive) link

How many machines?

• Not much gain in speed above a number of machines n_{max}

- $= t_p / t_s$
 - The slowest tasks (resampling) run at about 250kpix/s, that is ≈ 4MB/s (including weight-maps and reading+writing)
 - ✓ Hence if one manages to optimize the sharing of server bandwidth, assuming a sustained 80MB/s total in full duplex (Gigabit+PCI buses), one gets a limit in the number of machines of $n_{max} \approx 20$
 - But:
 - Reading and writing to the server occurs in bursts, because of synchronization constraints in the pipeline
 - The cluster might be used for faster tasks than resampling
 - One may get an "internal speed-up" in using both processors at once
 - The practical n_{max} is probably closer to something like 8 machines or even less

Working in parallel: SWarp

Connecting the machines

- Adopt TCP/IP protocol (portability, simplicity)
- The 12MB/s bandwidth offered by Fast Ethernet is too slow when it comes to transfer gigabytes of data between machines
 - Faster technologies (except multiple Fast Ethernet) include GigabitEthernet, Myrinet, SCI, IEE1394, USB2.0
 - Gigabit Ethernet: bandwidth = 100 MB/s, typical latency = $100 \mu \text{s}$
 - Myrinet: bandwidth = 100 + MB/s, typical latency = $10\mu s$
 - SCI: bandwidth = 800 + MB/s, typical latency = $5\mu s$
 - IEEE1394a: bandwidth = 50 MB/s, typical latency = $125 \mu \text{s}$ (?)
 - USB2.0: bandwidth = 60MB/s, typical latency = $120\mu s$
- For the parallel image processing of TERAPIX, latency is not critical (few transfers), but bandwidth is (lots of bytes at each transfer)
 - TCP layers wastes latency anyway!
- Go for Gigabit Ethernet!
 - The price of 1000base-T Gigabit Ethernet NICs has fallen considerably in 2001 (from >1000 € to less than 140 €)
 -but Gigabit switches are still fairly expensive (>1000 €)

E.BERTIN / TERAPIX

٠

•

Which Gigabit Ethernet adapter?

Throughput of Gigabit NICs measured by 8wire.com (Mbit/s)

The SysKonnect SK-9821

② 200 €

© PCI 32/64bit, 33/66MHz

- Efficient Linux driver included in kernels 2.2 and above
- Excellent technical support for user
- 8 Gigabit only
- Bulky radiator runs pretty hot
- 8 "Old product", the 3C1000-T might be a better bargain

Getting rid of the hub

- A gigabit hub is as expensive as a PC equipped with a NIC!
- The connection to the file server has to be shared by the computing units
- Why not use direct Gigabit Ethernet "cross-links" between the server and the clients?
 - 1 NIC on the client side
 - 1NIC per client on the server side
 - Fairly common with Fast Ethernet NICs
 - Caution: IRQ sharing, PCI slots, power draw-out
 - Experimental stuff! If it does not work, we will buy a switch

Testing Gigabit cross-link connections

- 2 SysKonnect SK-9821 where used for the tests
- Gigabit cross-links are <u>not</u> crossed!
- Without tuning, a throughput of about **30MB/s** is reached (the ping is 0.1ms)
- After tuning (jumbo frames and TCP buffers increased), transfer speed is extremely dependent on the chipset.
 - We measure the following PCI bus throughputs:
 - VIA KT266: **56MB/s**
 - VIA694XDP : 85MB/s
 - AMD761: 125MB/s
 - Using the 2 last machines, we measure 63MB/s sustained (ncftp+RAM disk, or IPerf), with 20% of CPU usage
 - The 64bit PCI bus of bi-Athlon motherboards helps a lot (>205MB/s)

Tuning for better Gigabit performance

Ong & Farrell 2000

Local disk storage

- On the computing units ("clients"): fast, local disk storage is required for data processing
 - Load raw/reduced images from the server only <u>once</u>
 - Scratch disk
 - Two sets of disks are needed: to read and to write from
 - Speed (transfer rate) is more important than reliability
 - Go for 2 RAID0 arrays
- Hard drive failure
 - At IAP (DeNIS, Magique, TERAPIX and 100 PCs): <5% per year
 - Downtime can be tolerated (No permanent storage on computing units)

RAID0 controllers

- For RAID0, sophisticated PCI RAID controllers are not required
- Any bunch of disks can be operated in software RAID0 mode under Linux
- Cheap (<200€) RAID controllers for 4 UDMA100 drives: Adaptec 1200A, HotRod 100 (Highpoint 370), Promise FastTrak 100:
 - The Fastrak 100 is the fastest (80MB/s). There is now support for Linux.
 - 4 disks per controller: 2 PCI RAID controllers are needed, for a total of 8 disks

Local disk storage (cont.)

- On the file server, securized disk storage is required
- RAID5 array:
 - Software RAID5 is very slow (<10MB/s) and resourceconsuming under Linux
 - 3Ware Escalade 7850 RAID0/1/10/5/JBOD card:
 - Hardware XOR: 50+MB/s in RAID5 with 4% CPU usage! (measured in Windows2000)
 - ©8 IDE master channels
 - ©PCI 64bit, 33MHz
 - ©Supported in Linux kernel 2.2 and above (...)
 - [®]Quite expensive (≈900€)

Which hard drives?

• RAID0 disks:

- Raw transfer rate is important with 4 disks: 7200 RPM recommended
- Highest capacity at 7200RPM: Western digital WD1000BB
 - [©] High capacity: 100GB
 - [©] Rather cheap: ≤300€
 - Cong-term reliability unknown

RAID5 disks:

- Parity computations, dispatching and 8 disks: 5400 RPM is sufficient
- Highest capacity: Maxtor 540DX
 - SVery high capacity: 120GB
 - [©] Rather cheap: ≤300€
 - B Long-term reliability unknown

TERAPIX "pipeline" cluster

- 4 × Computing units:
- ✓ Bi-AthlonMP @1.53G
- ✓ 2GB of RAM 266MHz
- ✓ 2×400GB RAID0 arrays
- Gigabit Interface
- Fast Ethernet interfac

SCSI Ultra160 interface

Cost

- Computing units (assembled, 1 year warranty):
 4 × 6k€
- Server (assembled, 1 year warranty): 7k€
- Rack, Switchbox, cables, 3kVA UPS: 2.5k€
 Total: 34k€ for 10 processors and 4TB of disk storage