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b KyberVision Consulting, R&D, 2150 Mackay Street, Suite 1908, Montréal, Que., Canada H3G 2M2
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Abstract

We evaluated orientation discrimination thresholds using an external noise paradigm. Stimuli were spatiotemporal Gaussian patch-
es of 2D orientation noise band-pass filtered in Fourier domain. Orientation acuity was measured for various combinations of stim-
ulus spatial bandwidth, spatial frequency, and size as a function of orientation bandwidths of the stimuli. Stimulus contrast was
matched in multiples of detection threshold. Consistent with the idea that stimulus orientation bandwidth acts as a source of external
noise, orientation discrimination thresholds increased monotonically in all conditions with stimulus bandwidth. To interpret these
results quantitatively, we first fitted a variance summation model to the data and derived the internal orientation noise, relative sam-
pling efficiency, and orientation tuning of the mechanism underlying orientation discrimination. Due to the equivocal biological nature
of these parameters for orientation discrimination, we investigated, with a modeling approach, how neural detectors characterized by
a broad orientation tuning may support orientation discrimination. We demonstrated using the ideal-observer theory that while linear
models, based on either unimodal filtering or center-surround opponency, predict the monotonic relationship between orientation dis-
crimination threshold and orientation noise, a nonlinear model incorporating a broadband divisive inhibition in the orientation
domain is a better candidate due to its contrast invariance. This model, using broad and similar orientation tuning for its excitatory
and inhibitory inputs, accounts for the acute orientation acuity of human vision and proves to be robust despite the variance found in
natural stimuli.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Early visual processing is characterized by neural and
psychophysical mechanisms that are broadly tuned for
wavelength, spatial frequency, orientation, and other visual
attributes. For example, neurophysiological evidence indi-
cates a broad orientation tuning (full-bandwidth at half-
height, FBHH � 40–60 deg) in cortical visual cells in both
monkeys and cats (Blake & Holopigian, 1985; De Valois,
Yund, & Hepler, 1982; Hammond & Andrews, 1978; Heg-
gelund & Albus, 1978; Vogels & Orban, 1991). Masking
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and adaptation paradigms used to investigate orientation
selectivity in human vision also support this broad orienta-
tion tuning for detection tasks (FBHH � 30–60 deg) (Blake
& Holopigian, 1985; Pandey Vimal, 1997; Phillips & Wil-
son, 1984). The visual system is nevertheless astonishing
in its capacity to discriminate very small variations in the
image content, for example in terms of color, position, ori-
entation, curvature, and stereopsis. In particular, human
vision is characterized by acute orientation discrimination,
typically less than 1 deg, despite the evidence for broad ori-
entation tuning of the underlying detectors (Burr & Wijes-
undra, 1991; Regan & Beverley, 1985; Webster, De Valois,
& Switkes, 1990).

A differential-response model of orientation discrimina-
tion has been proposed to solve this apparent discrepancy
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and to account for the off-looking strategy used by the
visual system to detect orientation change (Regan & Bever-
ley, 1985; Wilson & Regan, 1984). According to this model,
formulated either as a line-element or an opponent-process
model, orientation thresholds are not limited by the tuning
bandwidth of the underlying detectors but by their ability
to turn a stimulus orientation change into a reliable
response change. This response is maximal where the slope
of the tuning curve is the steepest. In such models, the
steepness of the slope of the tuning curve and noise levels
limit orientation resolution. A corollary of this model,
called an off-looking strategy, is that the most sensitive
detectors to orientation change are not the most activated
ones (i.e., those with the stimulus orientation close to the
detector orientation peak), but are those with a more
remote orientation peak (Regan & Beverley, 1985; Wilson
& Regan, 1984). The plausibility of such a model has been
demonstrated neurophysiologically in both cats and mon-
keys (Bradley, Skottun, Ohzawa, Sclar, & Freeman, 1985,
1987; Geisler & Albrecht, 1997; Scobey & Gabor, 1989;
Vogels & Orban, 1990). Despite their broad orientation
tuning, single neurons in the primary visual cortex can reli-
ably signal orientation differences of about 1 deg, and it is
the slopes of their tuning curves and response variability
that determine the minimum orientation differences that
can elicit a reliable response change.

Models that have attempted to account for orientation
discrimination, such as the line-element model (Wilson &
Regan, 1984) and opponent-process model (Regan &
Beverley, 1985), have implicitly considered grating-like
stimuli with a narrow orientation tuning that contain ide-
ally only one orientation. More natural and ecological
stimuli, however, are texture-like with a broad orienta-
tion tuning. Moreover, stimuli may be either limited in
size, or perceived by detectors with a limited spatial
extent, both conditions having the effect of broadening
the orientation content of the perceived stimuli. Thus,
it is advantageous for the visual system to remain rela-
tively insensitive to variation in the stimulus orientation
bandwidth, and maintain a good sensitivity to orienta-
tion change despite the presence of orientation
‘‘uncertainty.’’1

In this paper, we combine a psychophysical and a mod-
eling approach to address the issue of how the visual sys-
tem can maintain acute orientation discrimination over a
range of stimulus bandwidths, with the assumption of
detectors with broad orientation tuning. In the psycho-
physical section of the paper, we re-evaluate orientation
discrimination using an external noise paradigm. We first
1 The external source of orientation uncertainty results from the
orientation noise contained in the stimuli. Due to the broadband nature
of the stimuli, this external orientation noise is quantified by either the
variance or bandwidth of the orientation distribution. Consequently we
use the terms �orientation noise� and �orientation bandwidth� to express the
uncertainty produced by the orientation variance in the stimuli.
measure orientation discrimination thresholds as a func-
tion of orientation bandwidth of the stimuli for various
combinations of spatial bandwidth, spatial frequency,
and size. To quantify the role of these spatial parameters
on orientation discrimination, we fit the variance summa-
tion model to the data to derive the internal orientation
noise, relative sampling efficiency, and orientation tuning
of the underlying mechanism. We then use a modeling
approach with the aim of explaining how neural detectors
characterized by a broad orientation tuning can support
acute orientation discrimination despite the presence of ori-
entation noise in the stimuli. To our knowledge, no model
based on the broad orientation tuning of the detection
mechanisms has yet been proposed to account for the effect
of the stimulus orientation bandwidth on orientation dis-
crimination thresholds.

We consider two kinds of plausible ‘‘neural’’ model,
linear and nonlinear, and predict their differential
response to stimuli differing in mean orientation, similar
to those presented in the psychophysical task. Using the
ideal-observer theory we find that while linear models,
based on either unimodal filtering or center-surround
opponency, can account for the increase in orientation
discrimination thresholds as a function of stimulus orien-
tation bandwidth, they are not as robust as a nonlinear
model that incorporates a broadband divisive inhibition
in the orientation domain. This nonlinear model better
accounts for the monotonic relationship between orienta-
tion discrimination and orientation bandwidth we find
experimentally, especially in presence of contrast varia-
tion. By fitting the models to the experimental data, we
derive estimates of the models� parameters, in particular
the orientation bandwidths. The nonlinear model for ori-
entation discrimination demonstrates its ability to predict
the acute orientation acuity found in human vision
despite the broad orientation tuning of its excitatory
and inhibitory inputs. Finally, the relation between the
variance summation model and the nonlinear model is
discussed, as well as the biological plausibility of the pro-
posed model.

2. Methods

2.1. Stimuli

Following previous studies (Beaudot & Mullen, 2002, 2005; Heeley,
Buchanan-Smith, Cromwell, & Wright, 1997), we estimated orientation
acuity for two-dimensional band-pass filtered noise. The stimuli are con-
structed by filtering Gaussian noise in the Fourier domain with an appro-
priate anisotropic filter. The modulation transfer function of this filter is a
Gaussian in radial frequency and radial angle. The spectral density of the
resulting noise can be expressed in polar coordinates:

Snðfx; fyÞ ¼ Grðfr; fo;rf Þ � Ghðh; ho; rhÞ; ð1Þ

where

Grðfr; fo;rf Þ ¼ exp � 1

2
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Fig. 1. Schematic Fourier representation of the spectral density of 2D
oriented Gaussian noise.
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Fig. 2. Examples of noise stimuli: Gaussian-enveloped 2D n
and

h ¼ atanðfy=fxÞ; ð5Þ

fx and fy are the cartesian spatial frequencies, fr is the radial spatial
frequency, fo is the peak spatial frequency, rf characterizes the fre-
quency bandwidth, h is the radial angle, ho is the peak (or mean)
orientation, rh characterizes the orientation bandwidth (half-band-
width at half-height is given by sqrt (2 Æ ln (2)) Æ r). Fig. 1 illustrates
the extent and location of the noise spectral density in the Fourier
domain.

After inverse Fourier transform, the filtered noise sn (x,y) is multiplied
by a spatiotemporal Gaussian envelope to obtain patches of orientation
noise s (x,y, f) localized in space-time

sðx; y; tÞ ¼ snðx; yÞ � grðx; y; xo; yo;rrÞ � gtðt; to;rtÞ; ð6Þ

where gr () denotes a 2D Gaussian envelope centered at position (xo,yo)
with a spread rr, and gt () denotes a temporal Gaussian envelope centered
on time to with a time constant rt (rt = 250 ms).

Fig. 2 shows examples of the resulting noise stimuli, and illustrates the
effects of increasing spatial and orientation bandwidths. The spatial
parameters (fo, rf, rr) were varied across the stimuli condition in the psy-
chophysical experiment.

2.2. Apparatus and calibrations

Stimuli were displayed on a Sony Trinitron monitor (GDM-F500R)
driven by a VSG 2/4F graphics board (Cambridge Research Systems,
Rochester, England) with 15 bits contrast resolution, housed in a Pen-
h (σf  in octaves)
LOPED 2D NOISE
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oise as a function of spatial and orientation bandwidths.
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tium PC computer. The frame rate of the display was 76 Hz. The mon-
itor was gamma corrected in software with lookup tables using lumi-
nance measurements obtained from an OptiCAL gamma correction
system interfaced with the VSG display calibration software (Cambridge
Research Systems, Rochester, England). Luminance contrast was defined
in cone contrast space (Cole & Hine, 1992; Sankeralli & Mullen, 1996).
The monitor was viewed in a blacked out room. The mean luminance of
the display was 60 cd/m2. The stimuli were viewed at 60 cm. Stimuli were
generated on-line, and a new stimulus was generated for each
presentation.

2.3. Protocol

Orientation acuity (discrimination thresholds, ro) was measured at
various combinations of spatial bandwidth (0.25–1 octaves), spatial
frequency (fo = 1.5–18 cpd), and size (rr = 0.25–1 deg) of the patches
of orientation noise. All stimuli were matched in multiples of the con-
trast detection threshold, measured using a temporal 2AFC staircase
procedure. In each trial, one interval contained a noise patch and
the other contained a blank stimulus with the same average lumi-
nance. Subjects were asked to indicate which interval had the noise
patch. Orientation discrimination was measured using another tempo-
ral 2AFC staircase procedure, at 10 times the contrast threshold mea-
sured in the first experiment as a function of the orientation
bandwidth (rh = 1–48 deg) of the stimuli. The orientation bandwidth,
defined by a Gaussian distribution with standard deviation rh, can
be considered as a source of external noise to explore the degree of
selectivity of orientation tuning in the discrimination task. In each tri-
al, the subject has to determine in which direction, clockwise or
counter-clockwise, the patch of orientation noise in the second inter-
val appeared to be rotated with respect to the first. One of the inter-
vals contained a vertical reference patch with a ±5 deg jitter
(ho = 90 ± 5 deg), while the other one contained another noise patch
rotated by a relative amount depending on the staircase. Both patches
were independently generated.

In both 2AFC staircase procedures, either the stimulus contrast or
the stimulus orientation difference was reduced after two correct
responses, and increased after one wrong response. The change was
50% before the first reversal, and 25% after the first reversal. Each ses-
sion stopped after six reversals, and the threshold corresponding to a
criterion of 71% correct was computed from the mean of the last five
reversals. The duration of each stimulus was 1 s, and the overall con-
trast of each stimulus was modulated in time up and down according
External Orientation Noise
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Fig. 3. Variance summation model: orientation discrimination threshold (A) a
predicted by Eq. (7).
to a temporal Gaussian envelop (rt = 250 ms) centered on the tempo-
ral window (1 s). Auditory feedback was given after each trial. A
black fixation mark was briefly presented at the beginning of each ses-
sion in the center of the display, and subjects were asked to sustain
their focus during the whole session. Practice trials were run before
the experiments commenced. The number of trials per session was
for each experiment between 30 and 50 for each subject, and 4–5 ses-
sions were performed for each condition.

2.4. Observers

The observers were the two authors (WB and KTM). Both subjects
have normal, or refracted to normal vision. All experiments were done
under binocular conditions.

2.5. Models

2.5.1. Variance summation model

Typically, orientation discrimination thresholds increase monotoni-
cally with stimulus bandwidth. The manner in which orientation acu-
ity declines with stimulus bandwidth suggests it is determined by a
summation of noise processes (Pelli, 1990; Pelli & Farell, 1999),
and so we fitted orientation discrimination thresholds with a variance
summation model similar to previous studies (Beaudot & Mullen,
2002, 2005; Demanins, Hess, Williams, & Keeble, 1999; Heeley
et al., 1997)

ro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
Int þ

r2
h

N

r
ð7Þ

and

rknee ¼
ffiffiffiffi
N

p
� rInt. ð8Þ

According to this model illustrated in Fig. 3A, psychophysical
thresholds are limited by both internal and external noise processes.
These noise processes are assumed to be independent, thus their vari-
ances add. In this model, ro is the experimentally observed threshold,
rInt is the internal noise, rh is the external noise (stimulus orientation
bandwidth in our experiment), and N is the sampling efficiency,
which reflects how much of the stimulus is used for the task. A
parameter of interest is the knee point of the curves (rknee), also
called equivalent input noise, where the external and internal noises
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make an equal contribution to the observed threshold. The meaning
of this parameter appears clearer when representing orientation sensi-
tivity instead of orientation threshold as a function of external orien-
tation noise. As illustrated on Fig. 3B, it expresses the overall degree
of orientation tuning of the discrimination mechanism. Our threshold
data were fitted with this model using a least-squares procedure to
derive the internal orientation noise, sampling efficiency, and orienta-
tion tuning (rknee).

2.5.2. Neural models

We next present two kinds of plausible neural model (illustrated
in Fig. 4) whose aim is to relate the properties of a population of
orientation-selective detectors to the perception of orientation in
terms of detection and discrimination. We assume that orientation
detection and discrimination are subserved by the response of individ-
ual detectors and their differential response, respectively. We consider
an ensemble of orientation-selective detectors whose orientation tun-
ing curves peak at different values that span homogeneously the full
range of orientation (1D orientation ring), similar to the pinwheel
structure found in the primary visual cortex (V1). This ensemble con-
stitutes a set of identical broadband detectors with overlapping curves
sampling the orientation domain at constant intervals (1 deg step).
The orientation selectivity of the detectors is primarily set by a linear
input stage with an orientation tuning defined by a Gaussian func-
tion (other types may be used, see Swindale, 1998). We considered
a 2D spatial (Gabor-like) receptive field for this linear stage to
ensure the interdependence of orientation selectivity and spatial
extent.

The two types of models we investigated are distinguished by the
processing following the linear input stage: (i) a center-surround qua-
si-linear model where the output of the linear stage may receive a sur-
round inhibition in the orientation domain before applying a half-wave
rectification and a Naka–Rushton equation used to model the contrast
response function of striate cortex neurons (contrast gain control); and
(ii) a nonlinear model incorporating a broadband divisive inhibition in
the orientation domain. Note that in both models the response of the
linear input stage is proportional to stimulus contrast. We consider
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Fig. 4. Schematic description of the quasi-linear and nonlinear models. Bo
interact either linearly (A) or nonlinearly (B) to produce the response of
orientation (hs) and its orientation bandwidth parameter (rh). The detector
(ho) and the stimulus (hs).
only static (i.e., steady state) versions of the models. Each model is
simulated on the actual 2D stimuli used in the psychophysical experi-
ment (orientation noise patches), and the ideal-observer theory is
applied to their responses to predict their orientation discrimination
performance. The predicted performances are fitted to the experimental
data (orientation discrimination threshold versus stimulus orientation
bandwidth) to obtain estimates of the models� parameters. We then
compare the models� ability to account for the experimental data,
and the predicted orientation bandwidths obtained from the fitting
procedure.

2.5.2.1. Model stimuli. For consistency with our psychophysical data,
our models use spatially identical but static stimuli, orientation
noise patches as described in Eqs. (1)–(6). Stimuli all have the same
mean luminance (0.5) and their maximum contrast is normalized (to
unity) as the psychophysical stimuli were matched in multiples of
contrast detection threshold and stimulus bandwidth has no or a
small effect on contrast detection threshold. Note that the contrast
normalization has a profound effect on the stimuli spectrum ampli-
tude: the Fourier peak amplitude decreases exponentially with the
stimulus orientation bandwidth (k (rh) = [a + b Æ exp(�rh/c)]/(a+b)
provides a good fit). Note also that the stimuli could not be simply
modeled with a 1D Gaussian distribution in the orientation domain
because of their stochastic nature (due to their random spatial
phase) and their limited spatial extent that affects their actual orien-
tation bandwidth.

Each 2D stimulus s (x,y) is a function of five parameters, fo its
peak spatial frequency, rf its frequency bandwidth parameter, rr its
space constant, hs its mean orientation, and rh its orientation band-
width parameter. As fo, rf, and rf are fixed for a particular stimulus
condition, we note s (hs,rh) the spatial stimulus with peak orientation
hs and orientation bandwidth parameter rh. For each stimulus condi-
tion, we pre-compute the first stage�s response to a whole set of stim-
uli. The stimulus peak orientation (hs) is varied from 1 to 180 deg
(by step of 1 deg) while the filter orientation is fixed (at 90 deg) to
characterize the effect of the relative orientation between the two.
The orientation bandwidth (characterized by rh), which acts as a
%
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source of external orientation noise, is varied as well from 1 to
48 deg (in steps of 1 deg). These 180 · 48 stimuli (# stimulus orienta-
tions · # stimulus orientation bandwidths) are regenerated for each
orientation bandwidth of the input stage�s filter.

2.5.2.2. Linear input stage (excitatory input). The linear input stage is a 2D
Gabor filter with an even profile similar to the oriented receptive field
found in VI simple cells (Jones & Palmer, 1987). Its response to a stimulus
s (x,y) is given by their 2D convolution

rh;rðx; yÞ ¼ gh;rðx; yÞ�x;y sðx; yÞ; ð9Þ

where gh,r (x,y) denotes the filter impulse response with peak ori-
entation h and orientation bandwidth parameter r (peak spatial
frequency and spatial bandwidth were chosen to be the same than
those of the stimuli). For the sake of simplicity, we only consider
the location receiving the strongest response from the linear
stage:

r ¼ Maxx;y ½rh;rðx; yÞ�. ð10Þ

We note re (h,hs) the response of this linear stage characterized by an
orientation bandwidth parameter re and with peak orientation h in
response to a stimulus with a peak orientation hs, which constitutes
the excitatory input signal of the subsequent processing. In all simu-
lations, the orientation of the filter is fixed (h = 90 deg) and the stim-
ulus mean orientation is varied from 0 to ±90 deg relatively to h,
which provides the filter response as function of the relative orienta-
tion between the filter and the stimulus. Note that the response of
this linear stage to a single stochastic stimulus is characterized by a
Gaussian distribution in the orientation domain, a property we take
advantage of for simulation purpose (see Appendix A for computa-
tional details).

2.5.2.3. Inhibitory input. The inhibitory component used for both center-
surround quasi-linear model and nonlinear model consists of a 1D weight-
ing function that describes the interaction between neighboring detectors
in the orientation domain. The orientation tuning of this inhibitory com-
ponent is also characterized by a Gaussian distribution f (h,ho,r) (with a
unity integral)

f ðh; ho; rÞ ¼
1ffiffiffiffiffiffi
2p

p
r
� exp � 1

2
� h� ho

r

� �2 !
; ð11Þ

where r is the orientation bandwidth parameter of the tuning curve cen-
tered on peak orientation ho.

The weighting function of the inhibitory interaction applies onto
the response of the linear input stage (Eq. (10)) according to the
equation

riðhi; hsÞ ¼ k �
X
h

f ðh; hi; riÞ � reðh; hsÞp; ð12Þ

where k is the gain factor, ri the orientation bandwidth parameter,
and hi the peak orientation of the inhibitory input. Note that we
consider an inhibition applied onto the excitatory distribution re after
a power law of index p, rather than directly on the stimulus (as visu-
al input to cortex is mainly excitatory). The component ri may then
be seen as the response of a second-order inhibitory neuron (or inter-
neuron), while re may be seen as the response of a first-order
neuron.

2.5.2.4. Quasi-linear model with center-surround opponency. As early
studies have suggested the existence of lateral inhibition between ori-
entation detectors (Blakemore, Carpenter, & Georgeson, 1970; Blake-
more & Tobin, 1972; Carpenter & Blakemore, 1973; Sillito, 1975,
1979), we consider a linear model of orientation selectivity based on
center-surround opponency (Fig. 4A), where the inhibitory surround
provided by the input ri suppresses the excitatory center provided
by the input re, according to the equation (for linearity purpose we
assume p = 1)
Lðho; hsÞ ¼ reðho; hsÞ � riðho; hsÞ. ð13Þ

Note that both excitatory and inhibitory components are cen-
tered on the same peak orientation ho. This model introduces
explicitly lateral inhibitory interactions in the orientation domain
(k 5 0 in Eq. (12)). Analogous to the DOG filter (difference of
gaussians) in the spatial domain, an inhibitory surround broader
and weaker than the excitatory center induces a Mexican-hat-shaped
tuning curve that has the effect of sharpening orientation selectivity.
In absence of surround opponency (k = 0 in Eq. (12)), the linear
model collapses to a unimodal filter characterized by the excitatory
component re

Lðho; hsÞ ¼ reðho; hsÞ. ð14Þ

The response of this linear input stage per se is not appropriate as a
model of the visual responses found in cortical neurons. It lacks two essen-
tial properties, response rectification and saturation, which we implement
to form the quasi-linear models. Response rectification is implemented
through a half-wave rectification

Cðho; hsÞ ¼ Max½Lðho; hsÞ; 0�; ð15Þ

while response saturation is incorporated in the model using a Naka–
Rushton equation (cn/[cn+rn]) which has been shown to provide a
good fit to the contrast response function of striate cortex neurons
(Albrecht, Farrar, & Hamilton, 1984; Albrecht & Hamilton, 1982;
Geisler & Albrecht, 1997; Sclar, Maunsell, & Lennie, 1990; Tolhurst
& Heeger, 1997). We replace the contrast signal by the response of
the linear input stage to form an orientation-selective quasi-linear
model

Rðho; hsÞ ¼
Rmax � Cðho; hsÞn

Cðho; hsÞn þ rn
1=2

þM ; ð16Þ

where Rmax is the maximum response, M is a spontaneous firing rate, r1/2
is the half-saturation constant, and n is the response exponent. Note that
C (ho,hs) is simply scaled by contrast due to the linearity of the input stage.
The nonlinearity performed by this equation is a static energy gain
control.

2.5.2.5. Nonlinear model with divisive inhibition. Evidence for a
nonlinear contribution in the emergence of orientation tuning is
numerous (Gardner, Anzai, Ohzawa, & Freeman, 1999). A modifi-
cation of the Naka–Rushton equation, in which the energy
response of orientation-selective filters replaces contrast and r1/2
is a globally pooled activity, has been proposed to account for
the normalization of striate cell responses with respect to stimulus
contrast (Heeger, 1992). This contrast-normalization model has
been thought to be a critical feature of V1 cells to account for
the contrast invariance of their orientation tuning (Sclar & Free-
man, 1982; Skottun, Bradley, Sclar, Ohzawa, & Freeman, 1987).
By considering the half-saturation constant r1/2 as a dynamic
parameter, this idea of dynamic gain control has been further
developed to account for the adaptive spatiotemporal control of
visual sensitivity in the retina (Beaudot, 1994, 1996). Here, we
propose a variation of the biophysical normalization model of
Carandini and Heeger (Carandini & Heeger, 1994; Carandini, Hee-
ger, & Movshon, 1999), in which r1/2 is a locally pooled activity
that is orientation selective. The response of the nonlinear detector
(Fig. 4B) centered on orientation ho is defined by a modified
Naka–Rushton equation

Rðho; hsÞ ¼
Rmax � reðho; hsÞp

reðho; hsÞp þ riðho; hsÞq
þM ; ð17Þ

where r e(ho,hs) and r i(ho,hs) are the excitatory and inhibitory input
components, respectively (given by Eqs. (10) and (12)), Rmax is the
maximum response, power law indices p and q indicate the steep-
ness of the excitatory and inhibitory components, respectively, and
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M is a spontaneous firing rate. The component ri (ho,hs)
q is the

signal strength at which the detector reaches half its maximum re-
sponse. It is a dynamic and orientation-selective component that
depends on the weighting of the neighboring filters� responses
and that acts as a dynamic gain control through divisive
inhibition.

2.5.2.6. Prediction for orientation discrimination. We assume that
orientation discrimination is subserved by the differential response
of a single detector. A change in orientation, Dh, across two
stimulus intervals is detected when the differential response of a
detector exceeds a response threshold DR. The response threshold
DR is an unknown and subjective threshold parameter. A more
objective criteria is provided by the ideal-observer theory which
predicts the orientation discrimination performance of the model
according to the formula (Geisler & Albrecht, 1997; Scobey &
Gabor, 1989)

d 0 ¼ jDMeanjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AverageVariance

p

¼ jRðho; hs þ DhÞ

� Rðho; hsÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � Rðho; hs þ DhÞ þ K � Rðho; hsÞ

2

r,
ð18Þ

relating the discrimination index d 0 (1.0 for 75% correct in 2AFC)
to the mean and standard deviation of the neural response in the
presence of multiplicative noise, when the variance is proportional
to the mean response by a constant K (typically with values be-
tween 1.2 and 1.5, we set K to 1.2 in the simulations). Orientation
discrimination threshold can be derived from this formula by set-
ting d 0 to 1.0 and solving for Dh as function of stimulus band-
width (rh).

Note that stimulus peak orientation hs is a free parameter in
Eq. (18) (as stated earlier we assume a vertical detector, i.e.,
ho = 90 deg). The off-looking strategy suggests that the most sen-
sitive part of the detector�s response curve, at a remote orienta-
tion hdisc, underlies orientation discrimination (note that it also
depends on the stimulus orientation bandwidth parameter rh).
The remote orientation corresponds to the point of highest deriv-
ative where the slope of the tuning curve is the steepest, which
is defined by

johsRðho; hdiscÞj ¼ Maxhs
oRðho; hsÞ

ohs

����
����. ð19Þ

The discrimination index d 0 (Eq. (18)) can be approximated around the
orientation (hdisc) according to

d 0ðhdiscÞ �
2Dh � johsRðho; hdiscÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K � Rðho; hdiscÞ
p ð20Þ

and the orientation threshold (for d 0 = 1) is then given by

Dhmin ¼
1

2
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � RðhdiscÞ

p
johRðhdiscÞj

. ð21Þ

We use this expression to predict the orientation discrimination threshold
as function of the stimulus orientation bandwidth (rh) for all models, and
to fit them to the experimental data.

2.6. Fitting

We use Matlab (The MathWorks) and C programming to fit the
various models to the threshold data using a least-squares weighted
procedure and the Nelder–Mead simplex optimization combined with
an iterative procedure (a simplified version of the ‘‘simulated anneal-
ing’’ method for global optimization) to verify the stability of the
solution. The goodness of the fits is quantified with a Q measure.
Q is a v2 distribution function that gives the probability that the
minimum v2 is as large as it is purely by chance. For small Q val-
ues, the deviation from the model is unlikely to be due to chance
and the model may be incorrect. For larger Q values, the deviation
from the model is more likely to arise by chance suggesting the
model is an adequate description of the data. A Q of 0.1 suggests
an acceptable model fit (Press, Teukolsky, Vitterling, & Flannery,
1992).
3. Results

3.1. Psychophysical measurement

Figs. 5 and 6 show the orientation thresholds (mean
and standard deviation) measured for two subjects (WB
and KTM) as a function of orientation bandwidth for
various combinations of spatial frequency (fo = 1.5–
12 cpd), spatial bandwidth (rf = 0.25–1 octaves), and
size (rr = 0.25–1 deg) of the stimuli. All data sets for
both subjects are characterized by a monotonic increase
of the orientation discrimination thresholds (ro) with the
increase of stimulus bandwidth (rh), and are successfully
fitted with the variance summation model (Eq. (7)). This
is a robust result consistent with previous studies (Beau-
dot & Mullen, 2002, 2005; Demanins et al., 1999; Hee-
ley et al., 1997) which supports the idea that stimulus
orientation bandwidth acts as a source of external
noise.

The variance summation model provides a very good
fit in 13/14 conditions (Q > 0.4). Table 1 shows for both
subjects the internal noise (rInt), relative sampling efficien-
cy and bandwidth of the discrimination tuning (rknee)
derived from the fitting procedure (Eqs. (7) and (8)).
We find no significant effect of the spatial bandwidth, spa-
tial frequency, or size of the stimuli on internal noise and
discrimination tuning. Table 1 shows the averaged param-
eters along the respective dimensions and across all condi-
tions for each subject. Overall, internal orientation noise
is about 0.9 ± 0.3 deg; the bandwidth parameter (rknee)
of the orientation discrimination tuning is about
6.2 ± 2 deg, while sampling efficiency is more variable
across conditions for both subjects (with subject KTM
showing an overall higher relative efficiency). These esti-
mates are in agreement with previous studies of orienta-
tion discrimination (Demanins et al., 1999; Heeley et al.,
1997; Reisbeck & Gegenfurtner, 1998; Webster et al.,
1990; Wuerger & Morgan, 1999).

The absence of an effect of spatial frequency or size
on orientation discrimination is consistent with studies
using circular patches of sinusoidal gratings that report
that thresholds fall to asymptotic values as size, spatial
frequency, and contrast increase (Burr & Wijesundra,
1991; Henrie & Shapley, 2001; Mareschal & Shapley,
2004). The stimuli parameters we used are in the range
where this asymptotic behavior prevails. Note that vary-
ing the size (Henrie & Shapley, 2001; Mareschal & Shap-
ley, 2004) or aspect ratio (Heeley & Buchanan-Smith,
1998) of the stimuli acts on their orientation bandwidth,



Fig. 5. Orientation discrimination threshold as a function of stimulus bandwidth for subject WB for various combinations of spatial bandwidth (0.25 and
0.5 octaves in top-right graph, 1 octave in all other graphs), spatial frequency (1.5–12 cpd), and size (radius of 0.25–1 deg). Error bars denote standard
deviations. Smooth curves denote fits from the variance summation model.
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for example decreasing the size or the height-to-width
ratio broadens the stimulus orientation bandwidth.

The acute orientation acuity and the narrow tuning
found for discrimination (full-bandwidth at half-height
of about 15 deg) contrast with the broad orientation
tuning of the detection mechanisms revealed by psycho-
physics and neurophysiology (3–5 times broader). In the
next section, we investigate the ability of broadly tuned
detectors to predict acute orientation acuity and dis-
crimination threshold elevation with stimulus orientation
bandwidth.

3.2. Simulations

This section presents the orientation properties of the
quasi-linear and nonlinear models based on numerical
simulations in response to the same patches of 2D orien-
tation noise that we used psychophysically. Each stage is
analyzed in terms of the orientation tuning and ampli-
tudes of their responses as a function of the amount of
external orientation noise (quantified by the orientation
bandwidth of the stimuli characterized by rh), and are
described by the qualitative effects of the various param-
eters on these properties. The ability of each model to
account for psychophysical orientation discrimination is
evaluated by deriving its orientation thresholds from
Eq. (21) as a function of stimulus bandwidth. Next we
demonstrate that the nonlinear model, based on a divi-
sive broadband inhibition, is a more robust candidate
than the quasi-linear models crippled by their contrast
dependence.

3.2.1. Quasi-linear models
Fig. 7 illustrates the properties of the opponent quasi-

linear model Eqs. (12)–(16) in terms of orientation tuning
(Figs. 7A–C) and maximum amplitudes (Figs. 7B–D) for
the response and its differentiation to stimuli normalized
in terms of maximum contrast. In this example, the ori-
entation inhibitory surround is characterized by a broad
orientation tuning (ri = 25 deg) and a strong weight
(k = 1), while the excitatory input is characterized by a
narrower orientation tuning (re = 12 deg). Solid, dotted,



Fig. 6. Orientation discrimination threshold as a function of stimulus bandwidth for subject KTM. See Fig. 5 for details.

Table 1
Variance summation model�s parameters

Parameters WB KTM

rf fo rr All rf fo rr All

rInt (deg) l ± 0.2 0.8 ± 0.2 0.9 ± 0.1 0.9 ± 0.2 1.1 ± 0.2 0.7 ± 0.3 0.8 ± 0.3 0.9 ± 0.3
Efficiency 26 ± 8 112 ± 106 62 ± 40 43 ± 22 43 ± 18 97 ± 44 103 ± 36 82 ± 44
rknee (deg) 5.1 ± 0.5 8.4 ± 5.7 7.5 ± 4.3 5.1 ± 1.6 7.2 ± 1.6 6.4 ± 2.1 7.6 ± 2.4 7.2 ± 2.2

Means and standard deviations of the variance summation model�s parameters (internal noise rInt, relative sampling efficiency, and knee point rknee) along
the respective dimensions of the noise stimuli (spatial bandwidth parameter rf, spatial frequency fo, and radius rr) and across all conditions for both
subjects.
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and dashed curves in Fig. 7A show the model�s response
to a range of stimulus bandwidths (rh = 1, 21, and
41 deg) as a function of the stimuli orientation peak,
hs. The dash-dotted curve represents the Gaussian tuning
curve of the Gabor filter with re = 12 deg and centered
on ho = 90 deg. For all stimulus bandwidths, the quasi-
linear model responds best to stimuli centered on the
excitatory tuning (hs = ho), while the response decreases
for stimuli centered on orientations further away. The
main effect of increasing stimulus orientation bandwidth
is a weakening and broadening in the orientation tuning
of the quasi-linear model output, the response tuning to
the narrower stimuli being close to the filter tuning
(defined by re). Fig. 7B shows that the maximum
response (obtained for stimuli centered on the excitatory
tuning) is a monotonic function decreasing with stimulus
bandwidth, which indicates that the quasi-linear model is
more sensitive to narrow stimuli.

We assume that orientation discrimination is subserved
by the differential response of the orientation-selective
mechanism. Fig. 7C shows the differential response of
the opponent quasi-linear model to a small change in



Fig. 7. Properties of the opponent quasi-linear model (with strong inhibition, k = 1) as a function of orientation bandwidth (rh) for contrast-
normalized stimuli. (A) Orientation tuning of the filter response R (h); (B) maximum detector�s response; (C) orientation tuning of the detector�s
differential response oR(h)/oh; (D) maximum differential response. Dash-dot curves in A and C represent the filter orientation tuning (ho = 90 deg).
Solid, dotted, and dashed curves in (A) and (C) represent the responses at different stimulus orientation bandwidths. Solid, dotted, and dashed
curves in (B) and (D) represent the maximum responses for different values of the filter orientation bandwidth.
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the stimuli orientation (hs ! hs + Dh, with Dh = 1 deg) for
different stimulus bandwidths (solid, dotted, and dashed
curves). Consistent with the opponent-process model sug-
gested by Regan and Beverley (1985) for orientation dis-
crimination, the differential response is minimum for
stimuli centered on the filter orientation (hs = ho) and
the orthogonal orientation (hs = h0 ± 90 deg), and reaches
a maximum at neighboring orientations where the flanks
of the filter tuning curve are the most sensitive to a
change in stimulus orientation (Regan & Beverley,
1985). Both amplitude and orientation tuning of the dif-
ferential response are modulated by the stimulus orienta-
tion bandwidth similarly to the model response:
increasing the stimulus bandwidth weakens and broadens
the orientation tuning of the differential response, which is
similar to the Gabor filter�s differential tuning for the nar-
rowest stimuli (dash-dotted curve). Moreover the stimulus
orientation providing the highest differential response (the
one we note hdisc in Section 2) increases with the stimulus
bandwidth. As depicted in Fig. 7D, the maximum differ-
ential response (obtained for hs = hdisc) is a monotonically
decreasing function with stimulus bandwidth, whose max-
imum (at rh = 0 deg) and steepness increase for Gabor fil-
ters with narrower bandwidth (rh). This indicates that the
narrower the Gabor filter, the more sensitive the quasi-lin-
ear model is to orientation change in narrow stimuli, but
this advantage is lost for broader stimuli. Interestingly,
this property is unaffected by the inhibition weight and
the presence of the weak nonlinearities following the line-
ar stage (half-wave rectification and compression) since
the properties of the linear input stage (with and without
surround inhibition) are qualitatively similar to those of
the quasi-linear model. Except for a difference in respons-
es scale, the amplitudes and tunings of the linear input
stage are virtually the same as their quasi-linear
counterparts.



Fig. 8. Predicted orientation discrimination thresholds for the quasi-linear models as function of stimulus bandwidth for different bandwidths of the linear
input stage: (A) unimodal model for contrast-normalized stimuli; (B) unimodal model for stimuli with increasing contrast; (C) opponent model (k = 1,
ri = 25 deg) for contrast-normalized stimuli; (D) opponent model (k = 1, ri = 25 deg) for stimuli with increasing contrast.
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The quasi-linear model has the best response to stim-
uli with the narrowest orientation bandwidth, and this
is a critical property for predicting an increase in orien-
tation discrimination thresholds as function of stimulus
orientation bandwidth, as reported psychophysically in
Figs. 5 and 6. Broadening stimulus bandwidth has the
effect of attenuating the amplitude and broadening the
tuning of the differential response, increasing orientation
discrimination thresholds as a consequence since they
are assumed to be directly dependent on the orientation
sensitivity of the underlying detectors. The strictly
monotonic dependence of the differential response on
stimulus bandwidth predicts that thresholds for orienta-
tion discrimination also monotonically increase as a
function of the stimulus bandwidth. Applying the ide-
al-observer theory (Eq. (18)) to the quasi-linear model�s
response provides estimates of orientation discrimina-
tion thresholds (Fig. 8) comparable with their psycho-
physical counterparts (Figs. 5 and 6). As predicted by
the differential response, thresholds for the quasi-linear
model rise monotonically with orientation noise when
stimuli are contrast normalized (Figs. 8A and C). An
analysis of the effects of the various parameters shows
that: (i) the internal orientation noise rises with the
bandwidth of the excitatory input stage (re), the half-
saturation constant (r1/2), and the response exponent
(n), while it decreases with the bandwidth of the inhib-
itory surround (ri) and is unaffected by the inhibition
weight (k); (ii) the acceleration of the Threshold versus
Noise function (TvN) increases with the half-saturation
constant, the inhibition weight, and the response
exponent.

The above properties apply to the response of linear
or quasi-linear models when their visual inputs are nor-
malized in terms of maximum contrast. Figs. 8B and D
show their properties when stimuli are not normalized,
that is when their contrast covaries with their orientation
bandwidth. In this condition, the predicted thresholds
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for the quasi-linear model can be characterized by a U-
shape function, more pronounced for input filters with a
broad orientation bandwidth (for example, re = 25 deg).
This nonmonotonic relationship directly results from
the linear dependence of the input stage on stimulus
contrast. When contrast covaries with orientation noise
(rh), the maximum filter response and the maximum
differential response are no longer decreasing monotoni-
cally. Instead, the maximum filter response increases
monotonically with stimulus bandwidth and the maxi-
mum differential response shows an inverse U-shape with
stimulus bandwidth. Neither the inhibition, half-wave
rectification or compression corrects for this contrast
dependence.

This behavior is clearly inconsistent with the effect of
stimulus orientation bandwidth on orientation thresholds
reported psychophysically in Figs. 5 and 6 or in previous
studies, suggesting that the monotonic increase in orienta-
Fig. 9. Control experiment showing the effect of contrast on orientation
discrimination thresholds as a function of stimulus bandwidth for two
subjects. Results are shown for one stimulus condition (1 octave, 1.5 cpd,
radius of 1 deg). Left y-axis and solid line denote orientation thresholds,
while right y-axis and dotted line denote the contrast dependence with the
orientation noise. Error bars denote standard deviations of the orientation
thresholds.
tion thresholds with stimulus bandwidth is contingent on
contrast normalization already present in the stimuli.
However, the existence of a nonmonotonic relation
between threshold and noise is not supported by the psy-
chophysical results shown in Fig. 9 for both subjects, in
which stimulus contrast was increased with stimulus
bandwidth instead of using normalized contrast. This con-
trol experiment shows no evidence of improved orienta-
tion discrimination for intermediate levels of orientation
noise. Psychophysical orientation discrimination thresh-
olds still show a monotonic increase with orientation
noise despite increasing contrast. Moreover, as shown in
Fig. 8 increasing contrast with stimulus bandwidth con-
siderably improves orientation discrimination thresholds
(note the different y-scales for the normalized versus non-
normalized contrast conditions), a prediction refuted by
the psychophysical measurements (compare Fig. 9 and
Figs. 5 and 6).

To summarize, both linear and quasi-linear models
predict a monotonic increase of orientation discrimina-
tion threshold with stimulus orientation noise when
stimuli are normalized in terms of maximum contrast.
However, these models fail to maintain the monotonic
TvN function when stimulus contrast covaries with the
amount of orientation noise. This shortcoming suggests
that contrast normalization is required to achieve a
monotonic increase of orientation thresholds with orien-
tation noise. With stimuli contrast increasing with orien-
tation noise, the nonmonotonic dependence of the
differential response on stimulus bandwidth (described
by an inverse U-shape) suggests that for the quasi-linear
model a given threshold response for orientation dis-
crimination can be reached for both small orientation
changes in broadband stimuli (large rh) and larger ori-
entation changes in narrowband stimuli (small rh). To
achieve a response that decreases with stimulus band-
width independently of contrast, the responses to nar-
rowband and broadband stimuli need to be differently
affected by the activity of neighboring filters; small
response (to narrow stimuli) should be enhanced and
large response (to broad stimuli) should be decreased
according to the neighbors� activity. Intuitively, some
context-dependent gain control in the orientation
domain is required to achieve the relative enhancement
of center activity and suppression of surround activity
and to obtain a response similar to the response of
the quasi-linear model to contrast-normalized stimuli
(Fig. 7). The nonlinear model based on a broadband
divisive inhibition and presented in the next section
aims to achieve this goal. While the quasi-linear model
has the same limitation as the linear input stage in
terms of contrast dependence, it is useful because it is
characterized by the same neural constraints as the non-
linear model (in terms of response expansion, saturation,
gain, and spontaneous response) to which it can be
readily compared in terms of predicted thresholds and
fitted parameters.



 
 

 
 

 
 
 

Fig. 10. Properties of the nonlinear model (ri = 25 deg, k = 100, p = 1, q = 1) as a function of orientation bandwidth (rh) for contrast-normalized stimuli.
See Fig. 7 for details.
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3.2.2. Nonlinear model

We apply the same analysis to the nonlinear model
characterized by a broadband divisive inhibition in the
orientation domain, as given by Eq. (17) and illustrated
in Fig. 4B. Fig. 10 presents the properties of this nonlin-
ear model in terms of orientation tuning (Figs. 10A–C)
and maximum amplitudes (Figs. 10B–D) for the response
and its differentiation to stimuli normalized in terms of
maximum contrast. In this example, orientation inhibitory
surround is characterized by a broad orientation tuning
(ri = 25 deg). The orientation tuning for the nonlinear
model is qualitatively similar to the tuning of the oppo-
nent quasi-linear model (and its opponent input stage)
with weak surround inhibition. Its tuning is characterized
by a Mexican-hat shape for the narrower stimulus band-
width (low noise levels) that changes to a broad unimodal
tuning for broader stimulus bandwidths (high noise lev-
els). It is noteworthy that the response tuning to the nar-
rowest stimuli closely matches the tuning of the excitatory
input (dash-dotted curve, re). Both maximum response
and maximum differential response (Figs. 10B and D)
are characterized by a similar monotonic decrease with
stimulus orientation bandwidth: maximum amplitudes
decrease more steeply for narrower input stage (small
re), and collapse to similar responses at high levels of ori-
entation noise.

Applying the ideal-observer theory Eqs. (18)–(21) to
the nonlinear model�s response predicts monotonically
increasing orientation discrimination thresholds with ori-
entation noise (Fig. 11) comparable to the psychophysical
counterparts. An analysis of the effects of the parameters
shows that: (i) similar to the quasi-linear model, internal
orientation noise worsens with the bandwidth of the excit-
atory input (re), but improves with the inhibition band-
width of the divisive input (ri). (ii) The acceleration of
the TvN function drops with the bandwidth of both
inputs. (iii) Thresholds increase with the weighting factor
(k) and the response exponent (q) of the divisive inhibi-
tion, but decrease with the response exponent (p) of the
excitatory input. It is essential to note that this monotonic
relationship also holds for nonnormalized contrast
because of the nature of Eqs. (12) and (17) (replace re
by c.re where c would be contrast). Note also that the
responses are contrast invariant for q = 1 in Eq. (17),



 
 
 

 
 
 

 
 
 

Fig. 11. Predicted orientation discrimination thresholds for the nonlinear model showing the effects of the various parameters as function of stimulus
bandwidth for different bandwidths of the linear input stage: (A) thresholds derived from responses presented in Fig. 10 (ri = 25 deg, k = 100, p = 1,
q = 1); (B) increase in inhibitory bandwidth (ri = 35 deg, k = 100, p = 1, q = 1); (C) increase in inhibition weight (ri = 35 deg, k = 500, p = 1, q = 1; (D)
increase in excitatory response exponent (ri = 35 deg, k = 500, p = 2, q = 1).
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and that for very small values of the inhibitory response
exponent (q � 1) the nonlinear model collapses to the
unimodal quasi-linear model (with r1/2 = 1 and n = p).
In conclusion, the nonlinear model does not suffer from
the flaw that hampers the linear and quasi-linear models
since it predicts a monotonic increase of orientation dis-
crimination threshold with stimulus orientation noise
independently of stimulus contrast.

In summary, both quasi-linear and nonlinear models
capture the fundamental property reported psychophysi-
cally for orientation discrimination when using contrast-
normalized stimuli: orientation discrimination thresholds
increase monotonically with stimulus orientation band-
width. However, only the nonlinear model with broad-
band divisive inhibition maintains this relationship
when contrast increases with stimulus bandwidth. In
contrast, the linear and quasi-linear models show non-
monotonic TvN functions when contrast is not normal-
ized, and predict much lower than measured thresholds.
Note that in both models, there is no single parameter
that uniquely determines internal orientation noise or
threshold acceleration contrary to the variance summa-
tion model. The next section presents the results of
the procedure for fitting the experimental data to each
model.

3.3. Model fitting

We fit the unimodal quasi-linear (k = 0), opponent qua-
si-linear (k5 0) and nonlinear models to the psychophys-
ical thresholds as function of the external orientation
noise shown in Figs. 5 and 6. The unimodal quasi-linear
model provides a very good fit in 12/14 conditions
(Q > 0.3), the opponent quasi-linear model an acceptable
fit for all conditions (Q >= 0.1), and the nonlinear model
an acceptable fit in 13/14 conditions (Q >= 0.15). Fig. 12
shows some examples of the threshold data fitted by each
model.



Fig. 12. Examples of fits obtained from the quasi-linear and nonlinear models. Symbols denote measured orientation discrimination thresholds as a
function of stimulus bandwidth for subjects WB and KTM for various stimulus conditions (see Figs. 5 and 6). Error bars denote standard deviations.
Solid, dotted, and dashed curves represent fits from the variance summation, quasi-linear and nonlinear models as indicated in the legends. Fitted
parameters are indicated for each model.

Table 2
Unimodal quasi-linear model�s parameters

Parameters WB KTM

re (deg) 15.7 ± 5.1 14.6 ± 4.0
rn1=2 148 ± 55 123 ± 39
n 1.7 ± 0.3 1.9 ± 0.3

Means and standard deviations of the unimodal quasi-linear model�s
parameters across all experimental conditions for both subjects: orienta-
tion bandwidth parameter of the excitatory input stage (re), half-satura-
tion constant (r1/2), and response exponent (n).

Table 3
Opponent quasi-linear model�s parameters

Parameters WB KTM

re (deg) 14.9 ± 3.1 15.2 ± 3.8
ri (deg) 32.2 ± 9.4 35.3 ± 4.3
rn1=2 486 ± 113 467 ± 131
n 0.70 ± 0.08 0.70 ± 0.05
k 0.93 ± 0.09 0.93 ± 0.13
re/ri 0.51 ± 0.21 0.44 ± 0.12

Means and standard deviations of the opponent quasi-linear model�s
parameters across all experimental conditions for both subjects: ori-
entation bandwidth parameters of the excitatory and inhibitory inputs
(re,ri), half-saturation constant (r1/2), response exponent (n), gain
factor of the inhibitory input (k), and the ratio of the bandwidths
(re/ri).
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Table 2 shows the average and standard deviation of the
parameters for the unimodal quasi-linear model across all
experimental conditions. Orientation bandwidth, half-satu-
ration constant, and response exponent are similar for the
two subjects. The orientation half-bandwidth at half height
of the linear input stage is about 17 ± 5 deg. The response
exponent (n) is 1.8 ± 0.3, and the half-saturation constant
ðrn

1=2Þ is 135 ± 47.
Table 3 shows the average and standard deviation of the
parameters for the opponent quasi-linear model across all
experimental conditions. Orientation bandwidths, half-sat-
uration constant, response exponent, and inhibitory weight



Table 4
Nonlinear model�s parameters

Parameters WB KTM

re (deg) 19.4 ± 3.7 19.7 ± 3.2
ri (deg) 30.9 ± 9.5 29.0 ± 4.7
p 1.4 ± 0.5 1.4 ± 0.4
q 1.1 ± 0.2 1.0 ± 0.2
k 175 ± 60 411 ± 190
re/ri 0.7 ± 0.1 0.7 ± 0.1

Means and standard deviations of the nonlinear model�s parameters across
all experimental conditions for both subjects: orientation bandwidth
parameters of the excitatory and inhibitory components (re, ri), the power
law indices of these components (p, q), the gain factor of the inhibitory
component (k), and the ratio of the bandwidths (re/ri).
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are similar for the two subjects. The orientation half-band-
widths at half-height of the excitatory and inhibitory
inputs are about 18 ± 4 and 40 ± 8 deg, respectively.
The response exponent (n) is 0.7 ± 0.07, the half-satura-
tion constant ðrn

1=2Þ 476 ± 122, and the inhibitory
weight (k) 0.93 ± 0.11. A parameter of particular interest
is the ratio of the orientation bandwidths (re/ri) which
is 0.48 ± 0.16, indicating that the orientation tuning of
the inhibitory input is on average about twice as large as
the tuning of the excitatory input. Note the strong predict-
ed inhibition (k � 1) and the low response exponent
(n < 1).

Table 4 shows the average and standard deviation of the
parameters for the nonlinear model across all experimental
conditions. Orientation bandwidths and response expo-
nents are similar for the two subjects. The orientation
half-bandwidths at half-height of the excitatory and inhib-
itory inputs are about 23 ± 4 and 35 ± 8 deg, respectively.
The exponents, p and q, are 1.4 ± 0.5 and 1.0 ± 0.2, respec-
tively. The inhibitory weight (k) is more than twice larger
for subject KTM (note that the variance summation model
predicts a higher relative efficiency for this subject). The
ratio of the orientation bandwidths (re/ri) is 0.7 ± 0.1,
indicating that the orientation bandwidth of the divisive
input is about 40% larger than the bandwidth of the excit-
atory input.

Both quasi-linear models predict on average a relative-
ly narrower orientation bandwidth for the excitatory
input (re = 15 ± 4 deg) compared to the nonlinear model
(re = 19.5 ± 3.5 deg). Both opponent quasi-linear and
nonlinear models predict on average a relatively broad
orientation bandwidth for the inhibitory input
(ri = 32 ± 7 deg). While the differences in bandwidths
between the quasi-linear and nonlinear models do not
appear statistically significant, the bandwidth ratios (re/
ri) seem to point towards a more significant effect: the
opponent quasi-linear model predicts a linear center-sur-
round interaction between a narrow excitatory and much
broader inhibitory inputs, while the nonlinear model pre-
dicts a divisive center-surround interaction between excit-
atory and inhibitory inputs with much closer orientation
tunings.
4. Discussion

We propose a new model for orientation discrimina-
tion that accounts for the robust monotonic increase of
orientation thresholds with stimulus bandwidth acting as
a source of external noise. First, this model challenges
the validity of the variance summation model in the
context of orientation processing, and second, it consti-
tutes a biologically plausible alternative. Although corti-
cal orientation selectivity has been one of the most
studied aspects of visual processing, its origin and the
role of cortical inhibition have been major issues of dis-
cordance in the vision community. Our model proposes
that orientation sensitivity in orientation-tuned detectors
results from a selective gain control mechanism in the
orientation domain. This model, characterized by excita-
tion and suppressive inhibition with relatively similar
and broad orientation tuning, suggests that, rather than
sharpening orientation tuning per se, intra-cortical
mechanisms serve primarily to make orientation sensitiv-
ity less dependent on factors that are sources of
uncertainty.

4.1. A challenge to the variance summation model?

The equivalent noise paradigm has been widely used
to characterize the processing inefficiencies in the visual
system, i.e., how external noise affects perceptual
thresholds. Because perceptual thresholds generally
increase monotonically with external noise, it has been
proposed that they are determined by a summation of
noise processes (Pelli, 1990; Pelli & Farell, 1999). By
assuming the independence of these noise processes,
the monotonic increase of thresholds with external noise
is then simply predicted by a variance summation mod-
el (Eq. (7), Fig. 3). The conventional interpretation is
that in high noise range performance is limited by
external noise scaled by sampling efficiency, whereas
the low noise range is associated with limitations due
to (equivalent) internal noise, both revealing limitations
in the observer�s visual system. This threshold depen-
dence on external noise generally holds for contrast
sensitivity (Pelli & Farell, 1999). As orientation discrim-
ination threshold increases monotonically with orienta-
tion noise, it has been assumed that the variance
summation model also applies to orientation discrimina-
tion, and this model has been used to derive internal
orientation noise and sampling efficiency of the mecha-
nisms underlying orientation discrimination (Beaudot &
Mullen, 2002, 2005; Demanins et al., 1999; Heeley
et al., 1997). However, despite the empirical value of
the equivalent noise paradigm for orientation process-
ing, it has no theoretical ground yet in this context
for several reasons.

First, models of contrast detection and discrimination
assume nonlinear transducers that are monotonic with
contrast (Kontsevich, Chen, & Tyler, 2002). Clearly, this
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constraint does not apply to orientation sensitivity as
the underlying detectors are orientation-tuned, and so
nonmonotonic in their response to orientation. For
example, an orientation-tuned detector produces exactly
the same response to two gratings with different orienta-
tions if their contrasts are matched according to the
tuning curve of the detector analogous to the principle
of univariance in color vision. Second, contrary to the
nonlinear model, the circular nature of the orientation
domain is not embedded in the variance summation
model. Third, the response variability in cortical neu-
rons is characterized by a multiplicative noise (variance
proportional to the mean, Geisler & Albrecht, 1995), so
the amount of noise in a detector�s response is not fixed
but depends on the stimulus orientation. While neural
noise may be a source of additive internal noise in con-
trast processing, the assumptions underlying the vari-
ance summation model, that noise processes are
additive and independent so their variances add linearly,
are less likely to apply in the context of orientation pro-
cessing. Consequently the meaningfulness of internal ori-
entation noise and sampling efficiency remains unclear
in this context.

Internal noise reflects the existence of an absolute
threshold in the absence of external noise (i.e., narrow-
band grating stimulus), and so should reflect some intrin-
sic properties of the neural mechanisms underlying
orientation discrimination. Previous studies have suggest-
ed that the slopes of the detector tuning curve and the
response variability determine orientation discrimination
thresholds in single neurons (Bradley et al., 1985, Brad-
ley, Skottun, Ohzawa, Sclar, & Freeman, 1987; Geisler
& Albrecht, 1997; Scobey & Gabor, 1989; Vogels &
Orban, 1990). The different models support this view
since the main effects of orientation noise are the atten-
uation and broadening of the orientation tuning of the
response curves, both resulting in a decrease of the tun-
ing steepness as shown in Figs. 7A and 10A. The eleva-
tion in orientation discrimination thresholds is a direct
consequence of this loss in orientation sensitivity in the
detectors responses. In absence of external noise, orienta-
tion discrimination is limited by the slope of the tuning
curve of the mechanism, which then depends on the ori-
entation bandwidths of the excitatory and inhibitory
components: internal noise increases with re and decreas-
es with ri. However, other factors clearly affect internal
noise as suggested by Eq. (21). The internal orientation
noise directly results from the shape of the tuning curve
(steepness and response amplitude) and the proportional-
ity constant K (between the mean and the variance,
which does not differ significantly between cortical cells
(Geisler & Albrecht, 1995; Scobey & Gabor, 1989)),
not its bandwidth per se. Orientation discrimination pre-
dicted by the nonlinear model remains acute despite
moderate levels of external noise (stimulus orientation
bandwidth) and the broad orientation tuning of the
detection mechanism. This emphasizes the fact that ori-
entation discrimination is poorly correlated to the detec-
tor bandwidth.

To summarize, the nonlinear model accounts well for
the effect of the stimulus orientation bandwidth on orienta-
tion discrimination thresholds. However, rather than
assuming variance summation, this model relies on known
properties of the neural detectors thought to underlie ori-
entation detection and discrimination.

4.2. Biological plausibility

Many aspects of the nonlinear model are well support-
ed by physiological data. First, its linear input stage,
with an orientation tuning of 40 deg (full bandwidth at
half-height), is consistent with the broad orientation
selectivity of cortical cells first demonstrated by Hubel
and Wiesel (Hubel & Wiesel, 1959, 1962, 1968), and with
an aspect ratio between 1 and 1.5 typical of simple cells
(De Valois et al., 1982; Parker & Hawken, 1988). Sec-
ond, the presence of lateral inhibition in the orientation
domain through orientation-selective interactions between
orientation detectors is established in the cortex (Blake-
more et al., 1970; Blakemore & Tobin, 1972; Carpenter
& Blakemore, 1973), and is thought to enhance orienta-
tion selectivity by sharpening the broad tuning of cortical
inputs (Nelson & Frost, 1978; Sillito, 1975, 1979). This
accounts for the ‘‘Mexican hat’’ tuning reported in some
primate V1 neurons (De Valois et al., 1982; Ringach,
Hawken, & Shapley, 1997), also found psychophysically
(Motoyoshi & Kingdom, 2003; Ringach, 1998). As
shown by the tuning curve of the nonlinear model
(Fig. 10A), such ‘‘Mexican hat’’ tuning emerges without
resorting to linear interactions between narrowly tuned
excitation and broadly tuned inhibition. A dynamic ver-
sion of the nonlinear model (unpublished data) also pre-
dicts a center-surround tuning that develops over time
similarly to the dynamics of V1 cells recently reported
by Ringach et al. (Ringach, Hawken, & Shapley, 2003;
Shapley, Hawken, & Ringach, 2003). Third, this inhibi-
tion is suppressive and may account for the cross-orien-
tation suppression found in primate cortical neurons
(Bonds, 1989; DeAngelis, Robson, Ohzawa, & Freeman,
1992; Morrone, Burr, & Maffei, 1982; Petrov, Pigarev, &
Zenkin, 1980) and in human vision (Burr & Morrone,
1987; Morrone & Burr, 1986; Snowden & Hammett,
1992). Fourth, unlike previous models of V1 simple cells,
this inhibition is broadly tuned to orientation (Burr,
Morrone, & Maffei, 1981; De Valois et al., 1982; Hata,
Tsumoto, Sato, Hagihara, & Tamura, 1988; Kabara &
Bonds, 2001; Morrone et al., 1982; Nelson & Frost,
1978), is centered on the same orientation as the excit-
atory component (Allison, Casagrande, & Bonds, 1995;
Bonds, 1989; Ferster, 1986; Roerig & Chen, 2002; Sato,
Katsuyama, Tamura, Hata, & Tsumoto, 1996; Weliky,
Kandler, Fitzpatrick, & Katz, 1995), and has a roughly
similar bandwidth to the excitation (Anderson, Carandi-
ni, & Ferster, 2000; Ferster, 1986; Martinez, Alonso,
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Reid, & Hirsch, 2002). Finally, in the nonlinear model
response amplitude and orientation selectivity are unaf-
fected by contrast and so it accounts for the contrast
invariance of psychophysical orientation discrimination
at suprathreshold contrasts (Bowne, 1990; Nasanen,
Kukkonen, & Rovamo, 1997; Skottun et al., 1987; Smith
& Thomas, 1989) (but see Mareschal & Shapley, 2004).
Many neurons in the striate cortex reach their maximum
response at low-to-medium contrasts (Sclar & Freeman,
1982; Shevelev, Lazareva, Novikova, & Tikhomirov,
1985; Skottun et al., 1987) also providing contrast invari-
ance. In summary, these physiological data point
towards an orientation-selective mechanism generated at
the earliest cortical level that receives similarly structured
excitatory and inhibitory inputs. The data also argue for
a nonlinear, broadly tuned and centered inhibition simi-
lar to the divisive inhibition embedded in the nonlinear
model.

5. Conclusion

There is a great deal of evidence that area V1 is more
than a bank of static oriented filters. Area V1 performs
sophisticated and complex image processing, which can-
not be reduced to an array of spatiotemporal linear fil-
ters. On the contrary, it appears to constitute a bank
of dynamic and interacting oriented nonlinear filters
under the influence of visual context (Gilbert & Wiesel,
1990). The nonlinear model we propose for orientation
discrimination suggests a further refinement of the func-
tion of simple cells in area V1. First, it supports the idea
that the nonlinear interaction between similar and broad-
ly tuned excitatory and inhibitory inputs may neither cre-
ates nor sharpens orientation selectivity originating from
a strong orientation-tuned thalamic input (Chung & Fer-
ster, 1998; Ferster, 1987; Ferster, Chung, & Wheat, 1996;
Nelson, Toth, Sheth, & Sur, 1994; Reid & Alonso, 1995),
but rather makes simple cells selectively sensitive to one-
dimensional stimuli such as contours (Burr et al., 1981;
Morrone et al., 1982). Second, and more importantly,
this orientation-selective intra-cortical inhibition may
help to maintain their sensitivity to orientation change
despite orientation uncertainty by ensuring that the ori-
entation tuning is less dependent on internal and external
factors that greatly vary from cell to cell and that are
sources of orientation uncertainty, due to either stimulus
bandwidth, variability in receptive field size and shape
(Gardner et al., 1999), or contrast variance. However, it
is unlikely to constitute the sole neural substrate underly-
ing human performance. V1 cells show a high diversity of
properties with a wide range of orientation tuning from
very sharp to very broad (Mario, Schummers, & Sur,
2003; Monier, Chavane, Baudot, Graham, & Fregnac,
2003; Ringach, Shapley, & Hawken, 2002; Shevelev
et al., 1985), while human vision is only characterized
by broadly orientation-tuned detection mechanisms
(Blake & Holopigian, 1985; Pandey Vimal, 1997; Phillips
& Wilson, 1984). The present model also suggests that,
while single neurons may reliably signal orientation dis-
crimination (Geisler & Albrecht, 1995; Zohary, Hillman,
& Hochstein, 1990) and may account for the orientation
discrimination thresholds reported psychophysically, the
underlying computation involves nonlinear interactions
amongst a neural population with similar orientation
tuning and overlapping receptive fields.
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Appendix A. Simulation details

Because of the stochastic nature of the stimuli, their
convolution with the Gabor filter (linear input stage)
results in highly noisy responses. Averaging the filter
responses on many stimuli generated with the same set
of parameters provides a smoother response that can
be used to fit the models to the experimental data. How-
ever, this scheme is extremely costly as the computation
of a single instance for a given filter requires 180 · 48
(# stimulus orientations · # stimulus orientation band-
widths) calculations, each involving the generation of a
stimulus (Fourier spectrum + inverse Fourier trans-
form + product with a Gaussian envelope + normaliza-
tion), followed by the convolution with the filter
(Fourier transform + product with the filter spec-
trum + inverse Fourier transform) and the Max function
(Eq. (10)). Fortunately, the filtering of each stimulus
(with a given orientation bandwidth) shows a Gaussian
distribution as function of the stimulus orientation,
which can be fitted with the function

gðhÞ ¼ bþ a � exp � 1

2
� h� ho

r

� �2 !
; ðA:1Þ

where b is the baseline, a is the amplitude, r is the
spread, and ho is the peak orientation of the Gaussian
distribution (ho is constrained to the filter orientation).
Coefficient of variation (rms error/mean) is less than
10% for all fits (i.e., all orientation bandwidths of filters
and stimuli).

This computational shortcut is particularly valuable
when fitting the models to the experimental data. As orien-
tation bandwidth of the Gabor filter (re) is a free parameter
in this process, we pre-compute the response of the linear
input stage to 180 · 48 stimuli configurations as function
of the filter orientation bandwidth (re = 1–45 deg by step
of 1 deg). Then we fit the Gaussian distribution (Eq. A.1)
to the 48 · 45 (# stimulus bandwidths · # filter band-
widths) responses of the input stage as function of stimulus
orientation. Once pre-computed, the response of the 2D
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linear input stage to any combination of stimulus orienta-
tion bandwidth (rh), stimulus mean orientation (ho), and
filter orientation bandwidth (re) can feed the subsequent
1D stages of the models. Hence, pre-computing the most
costly part of the simulation provides an effective way to
fit all models to the experimental data.
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