Traitement de données pour le CFHTLS

Quelques pistes développées par l'équipe

Signal - Images - Instrumentation du LA-OMP

Marc Allain (post. doc.), Eric Anterrieu (IR), Hervé Carfantan (MCf) 2 stages DEA et 3 projets master

- □ Caractérisation morphologique : Décomposition Bulbe + Disque
 - → Identifiabilité des paramètres du modèle
 - → Mise en œuvre algorithmique
- Déconvolution multi-vues
 - → Déconvolution avant caractérisation ?
 - → Prise en compte du caractère multivues décalées/myope

Décomposition Bulbe + Disque (1)

Estimation paramétrique : $\mathbf{y} = h * \mathcal{M}(\boldsymbol{\theta}) + \mathbf{B} + \boldsymbol{\epsilon}$

$$\mathcal{M}_{(x,y)}(\theta) = \underbrace{\frac{F_T BT}{7,214\pi\rho_b^2} \exp\left\{-k\left(\left(\frac{r_b(x,y)}{\rho_b}\right)^{\frac{1}{n}} - 1\right)\right\}}_{\text{où } r_b^2(x,y) \text{ et } r_b^2(x,y) \text{ dépendent de } (dx,dy,\phi_b,e_b,\phi_d,e_d)} \underbrace{\frac{\text{disque}}{F_T (1-BT)} \exp\left\{-\frac{r_d(x,y)}{\rho_d}\right\}}_{\text{disque}}$$

- \square Minimisation $||h * \mathcal{M}(\boldsymbol{\theta}) + \boldsymbol{B} \boldsymbol{y}||^2$ s.c. $\theta \in \Theta$
 - \rightarrow Optimisation locale (Galfit...)
 - → Optimisation globale stochastique (GIM2D...)
- Estimateur médiane, moyenne, maximum...
 - $\rightarrow e.g.$ GIM2D : médiane (Échantillonnage de Metropolis)

Décomposition Bulbe + Disque (2)

Notre expérience (sur données simulées)

- Minimisation par des techniques d'optimisation locale (GC, BFGS)
 - → Résultats mauvais (même sans bruit)
- ☐ Minimisation globale par des techniques stochastiques (SA)
 - $\rightarrow B/T \approx 0.5$: $R_{\rm disk}$ mal contraint \Rightarrow problèmes sur F_T et B/T
 - $\rightarrow B/T \approx 0$: param. disk OK, mais petites erreurs sur $R_{\rm disk} \Rightarrow {\rm pb.~sur}~F_T$
 - ⇒ problèmes d'identifiabilité à prévoir
- Autres estimateurs
 - \rightarrow Comparaison avec GIM2D à faire

Déconvolution Multi-vues décalées/Myopes

Modèle : $\boldsymbol{y} = \mathbf{h} * \mathrm{image} + \boldsymbol{B} + \boldsymbol{\epsilon}$

Supprimer l'effet du bruit et de la FTM avant la caractérisation / classification

- Prise en compte du caractère multi-vues décalées
 - → Déconvolution rapide par filtrage de Wiener
 - → Estimation préalable ou conjointe des décalages
- Déconvolution myope
- Extension au multi-spectral

Quelques questions en suspend

- □ Bulbe + Disque
 - → Choix de l'estimateur (échantillonnage stochastique ?)
 - → Impact sur le coût d'implantation
 - \rightarrow Problème du bruit de fond \boldsymbol{B} (estimation conjointe)
 - → Caractère multi-vues / multi-spectral
 - → Validation / comparaison GIM2D
- Déconvolution Multi-vues décalées/Myopes
 - \rightarrow Quelle classification?
 - \rightarrow Extension multi-spectrale