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The Hermite Transform--Theory 
JEAN-BERNARD MARTENS 

Abstract-A digital image is usually specified by an array of point- 
wise intensities. For an intelligent interpretation of the image data we 
need to make the important information explicit. This usually implies 
determining spatiotemporal relationships between these intensities, and 
hence requires some form of local processing of the visual data. In this 
paper we introduce a new scheme for the local processing of visual 
information, called the Hermite transform. We have addressed the 
problem from the point of view of image coding, and therefore the 
proposed scheme is presented as an analysislresynthesis system. Our 
objectives are, however, not restricted to coding. First, the analysis 
part is designed so that it can also serve applications in the area of 
computer vision. Indeed, derivatives of Gaussians, which have found 
widespread application in feature detection over the past few years, 
play a central role in the Hermite analysis. Second, next to integrating 
ideas from the distinct, but related, areas of image coding and com- 
puter vision, it is argued that the proposed processing scheme is also 
in close agreement with our current insight into the image processing 
that is carried out by the human visual system. 

I. INTRODUCTION 
OR many applications in image coding and computer F vision, as well as in the case of human visual percep- 

tion, it is required that the image data, which are given as 
an array of intensity values, be interpreted into meaning- 
ful visual patterns. It is generally agreed that some form 
of local spatiotemporal processing of the original data is 
required for that purpose. This kind of processing in- 
volves two important decisions. First, to make the pro- 
cessing local, the image is usually multiplied by a window 
function. The size of the window establishes the set of 
image points that contribute to one basic processing step. 
The form of the window function determines the relative 
weight of each contributing image point. In order to de- 
scribe the image completely, this local processing has to 
be repeated for a sufficient number of window positions. 
The form, size, and spacing of the window function have 
to be selected. Second, for each position of the window, 
specific processing steps have to be undertaken. As any 
specific choice of processing implies the search for spe- 
cific patterns, selecting this process is equivalent to fixing 
the visual patterns which are considered most relevant a 
priori. 

It is very difficult to make optimal choices for the win- 
dow function and processing on purely theoretical argu- 
ments. The human visual system is therefore often used 
as a reference, an approach that is also adopted in this 
paper. It is, however, interesting to briefly review avail- 
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able image processing techniques with respect to the 
choices that have been made for thz window function and 
processing. 

A class of window functions that are often used are 
square, nonoverlapping windows. They are, for instance, 
adopted in transform coding (TC) [ l ]  and image vector 
quantization (VQ) [2], and represent the simplest way of 
subdividing an image. An important disadvantage is that 
at low data rates, blocking effects appear which are quite 
annoying to a human observer. Difference pulse code 
modulation (DPCM) [3], on the other hand, uses some 
form of scanning pattern together with a prediction win- 
dow that only includes preceding pixels. Hence, only part 
of the neighboring information is included in the image 
analysis. Both preceding window functions represent 
fairly artificial subdivisions of the pixel domain, and have 
little perceptual relevance. Most second generation image 
coding techniques [4] such as pyramid coders (PC) [ 5 ] ,  
subband coders (SBC) [6]-[8], the cortex transform (91, 
1101, and Gabor expansions [ 1 11, [ 121, use overlapping 
window functions. Recent papers show that several of 
these coding techniques (PC, SBC), which are most often 
described in the frequency domain, can also be described 
in the spatial domain by wavelet theory [ 131, [ 141. Wave- 
let theory shows how signals can be expanded on a family 
of functions which are the dilate and translate of a unique 
(window) function. The window functions that satisfy all 
necessary orthogonality conditions do, however, have two 
disadvantages. First, they are usually much larger than 
the window spacing (a window of length 32 for a subsam- 
pling factor of 2 is not uncommon in SBC [8]). Second, 
they often have considerable ringing and are hence less 
smooth than the window functions deduced from overlap- 
ping receptive fields in human visual perception [ 151. In 
order to get smooth window functions, it is necessary to 
drop the orthogonality condition between basis functions 
of adjoining windows. This is, for instance, done in Ga- 
bor expansions, where smooth (Gaussian) window func- 
tions are used. There is, however, no need for dropping 
the orthogonality condition between the basis functions 
belonging to one window. The alternative image descrip- 
tion method presented in this paper differs from Gabor 
expansions in this aspect. The effect of using (smooth) 
overlapping window functions is that images become un- 
sharp at low data rates. Human observers usually consider 
this kind of image degradation more natural and less an- 
noying than blocking effects [ 161. The comparison is very 
similar to nearest neighbor versus higher order interpola- 
tion [17]. 
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An important parameter of a window function is its size 
(or scale). The selection of an appropriate window size 
poses a fundamental problem. On the one hand, in order 
to enable high data reductions, the window size has to be 
sufficiently large. On the other hand, the complexity of 
the analysis within each window increases rapidly with 
the window size. There are two possible approaches to 
the problem. First, we can select a window of fixed size 
and perform an analysis within each window that is suf- 
ficiently complex to include all visual patterns of interest. 
This approach is taken in many available coding tech- 
niques. Second, we can limit the complexity of the anal- 
ysis that we perform in each window, and subsequently 
determine the window size needed to describe the image 
locally with sufficient accuracy. Hence, instead of re- 
stricting the processing to one scale, we repeat the same 
processing at multiple scales and subsequently use the 
outputs of this processing stage to select the optimum scale 
at each position [ 181-[2 I ] .  There is compelling evidence 
that the human visual system uses this “scale space” 
principle (221. and therefore we will also adopt it in our 
approach. 

If window functions of different sizes are used, then the 
spacing of the window functions is usually taken propor- 
tional to their size. In most pyramid structures [SI, [23], 
the window spacing and size increase in steps of two. It 
has been shown that this exponential increase in window 
size and spacing is not only preferable from an informa- 
tion-theoretical point of view (241, [25], but is also com- 
putationally efficient [26]. [27]. 

Last but not least, we briefly review different local sig- 
nal processing techniques that have been developed in the 
past. Statistical coding methods such as DPCM and VQ 
do not give an a priori specification of the basic visual 
patterns that are used in the analysis. Instead, they use the 
statistics of “typical” images to determine these patterns 
by iterative techniques. Although these methods were first 
applied directly to the image data, nowadays they are usu- 
ally combined with other preprocessing techniques. This 
acknowledges the fact that describing the images by a 
priori selected patterns, and subsequently using statistical 
methods to model the remaining dependencies, is often 
more fruitful than a direct statistical approach [8]. It also 
limits the complexity of the statistical search. In this pa- 
per, we concentrate on the preprocessing stage. Wavelet 
decompositions (with PC and SBC as special cases) fit a 
selected spatial pattern to the image. However, as stated 
earlier, the patterns that are typically used do not correlate 
very well with the filtering that is found in human vision. 
Using patterns with different orientations, as is done in 
directional coding [281-(301 and the cortex transform, is 
in  close agreement with human visual perception, and will 
also be included in our approach. In TC and Gabor ex- 
pansions. a local harmonic analysis is performed on the 
signal. These harmonic descriptions are used extensively 
in iniagt coding, but have found little application in im- 
age analysis. In computer vision, the image processing 
problem is addressed from the point of view of interpre- 

tation, as one is mainly interested in finding the important 
image features such as edges and lines [3 11-[33]. The re- 
sulting processing often involves the use of first- and sec- 
ond-order derivatives, almost always in combination with 
some regularizing low-pass filter [34]. In this paper, we 
introduce a new signal transformation technique that in- 
volves these operators. One advantage is that the inter- 
pretation of this new transform can profit from the vast 
experience with such operators in computer vision. More- 
over, it was demonstrated recently [35]-[37] that deriva- 
tives of Gaussians can model filter operations in human 
vision with the same accuracy as the often used Gabor 
filters. The derivatives of Gaussian operators even have 
the advantage that they accomplish this modeling with 
fewer parameters. Hence, the new transform is also sup- 
ported by current insights into human visual perception. 

In Section 11, we define a broad class of signal repre- 
sentations based on polynomial approximations within a 
local window. These representations will be called poly- 
nomial transforms. In Section 111, we argue the impor- 
tance of Gaussian windows. The resulting transform for 
this specific choice of window is called the Hermite trans- 
form. Its most interesting properties are also derived. The 
extension of the one-dimensional (1D) theory of Section 
I1 to two dimensions is described in Section IV. It is shown 
how directional selectivity can be introduced in two-di- 
mensional (2D) polynomial transforms. In Section V we 
discuss some of the simplifications that arise in the case 
of the 2D Hermite transform. The three-dimensional case 
is discussed shortly in Section VI, where we concentrate 
mainly on the velocity selectivity property of the trans- 
form. In Section VII, we show how polynomial trans- 
forms can be reformulated for discrete signals. The dis- 
crete Hermite transform is defined in Section VI11 to 
correspond to binomial windows. 

In the accompanying paper [51], we will discuss the 
performance of the Hermite transform in a multiscale 
analysis. Applications in image coding and computer 
vision will also be illustrated in that paper. 

11. ONE-DIMENSIONAL POLYNOMIAL TRANSFORMS 
In this section we develop a new signal decomposition 

technique, called a polynomial transform, in which sig- 
nals are locally approximated by polynomials. We intro- 
duce the basic ideas on 1D analog signals. Extensions to 
multiple dimensions and discrete signals will be consid- 
ered in the following sections. 

The analysis by a polynomial transform involves two 
steps. In a first step the original signal L ( x )  is localized 
by multiplying it by a window function V ( x ) .  A complete 
description of the signal requires that the localization pro- 
cess is repeated at a sufficient number of window posi- 
tions. We consider the case of equidistant spacing be- 
tween windows. 

From the localized window function V ( x ) ,  we can con- 
struct a weighring function 

W ( x )  = c V ( x  - k T )  ( 1 )  
!, 
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by periodic repetition. The weighting function is itself pe- 
riodic with period T. Provided W ( x )  is nonzero for all x, 
we get 

so that we are guaranteed that the localized signals L ( x )  
V ( x  - k T )  for all different window positions kTcontain 

sufficient information about the original signal. 
The second step consists of approximating the signal 

piece within the window V ( x  - k T )  by a polynomial. As 
basis functions for the polynomial expansion, we take the 
polynomials G,(x), degree [G, , (x)]  = n ,  that are or- 
thonormal with respect to V 2 ( x ) ,  i.e., 

+ m  

( 3 )  
- m  

These polynomials are uniquely determined by V 2  (x). 
The orthonormal polynomials for an arbitrary window 
function V 2  (x )  are given by 

c,  - * -  I CO 

where the determinant M ,  is defined by 

and 
+ m  

c, = x ” V 2 ( x ) d x  ( 6 )  
-09 

is the nth order moment [38]. 
If V 2  ( x )  is even, then we can derive the following ex- 

plicit expressions for the orthonormal polynomials up to 
order 3 

r- 
G ~ ( x )  = l / ~ / c o  

G ~ ( x )  = ( c ~ x ’  - c ~ x ) / J c ~ ( c ~ c ~  - c : ) .  ( 7 )  

Examples of orthogonal polynomials for different window 
functions are listed in [39]. 

Under very general conditions [40] for the original sig- 
nal L ( x ) ,  we get that 

r m 1 

V ( x  - k T )  L ( x )  - L , , ( k T )  G,,(x - k T ) ]  = 0 I I, = 0 

with 
+ m  

L , , ( k T )  = 1 L ( X )  . Gll(x - k T ) V 2 ( x  - k T )  dx. 
-m 

( 9 )  

For instance, requiring that L ( x )  is analytic and finite for 
all x is sufficient to guarantee the convergence of the se- 
ries expansion in (8) for most window functions. Hence, 
the approximation error between a signal and a polyno- 
mial can be made arbitrarily small by taking the degree 
of the polynomial expansion sufficiently high, as is well 
known from Taylor expansions. This implies that the de- 
scription of the localized signal L ( x )  * V ( x  - k T )  can, 
up to an arbitrary small approximation error, be reduced 
to specifying a finite set of polynomial coefficients 
L , , ( k T ) .  The signal energy within the window can be ex- 
pressed in terms of the coefficients of the expansion, i .e . ,  

L , ? , ( k T ) .  (10)  
+ m  m j L ’ ( x ) V ’ ( x  - k T ) d x  = 
- m  I 1  = 0 

This is the generalization of Parseval’s theorem to or- 
thonormal polynomials. 

Combining (2) and (8), we get the following expansion 
for the complete signal 

m 

L ( x )  = L , , ( k T )  * P l l ( x  - k T )  ( 1 1 )  
, r = O  f 

where 

P , , ( - y )  = G l l ( . + w / ~ ( - +  (12)  

Equation (9) implies that the coefficients L , , ( k T )  can be 
derived from the signal L ( x )  by convolving with the$lter 
functions 

D , , ( x )  = G,,( - x )  V 2 (  - x )  (13)  

followed by sampling at multiples of T.  This mapping 
from the original signal L ( x )  to the polynomial coeffi- 
cients L,, ( k T )  is called a forward polynomial transform. 
The signal reconstruction from these coefficients can be 
done according to (1 1)  and is called an inverse polynomial 
transform. It consists of interpolating the coefficients 
{ L, ( k T ) ;  k integer ] with the pattern function PI, ( x )  and 
summing over all orders n .  The forward and inverse poly- 
nomial transforms are illustrated in Fig. 1 .  

Appendix A shows how the spectrum of the recon- 
structed signal is influenced if the polynomial coefficients 
L , ( k T )  are multiplied by constants r r l .  This includes the 
case of a finite transform for which t,, = 1 for 0 5 n 5 
N and I , ,  = 0 for n > N .  If the coefficients in the signal 
expansion of (1 1) are pointwise multiplied by fixed con- 
stants, then the output signal becomes 

W 

i ( x )  = c r,, . L , , ( k T ) P , , ( x  - k T ) .  (14)  
11 = 0 k 
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The Fourier transform of i ( x )  is 

l r n  
[ ( U )  = C - C t l , p f I ( W )  d,, 

k T n = o  

, ( . - k $ )  

where l ( w ) ,  d, (w) ,  andp , (o )  are the Fourier transforms 
of the respective signals L ( x ) ,  D , ( x ) ,  and P , , ( x ) .  The 
term for k = 0 represents a signal filtering with 

(16) 
l r n  

h ( W )  = - t f ,  . P l l ( W )  * d , , ( W ) .  T n = o  

The aliasing terms fork # 0 arise from the sampling with 
period T. The filtering and aliasing effects will be dis- 
cussed in the next section for the case of a finite transform 
and a Gaussian window. Of course, if t,, = 1 for all n ,  
then the signal reconstruction is exact. 

111. ONE-DIMENSIONAL HERMITE TRANSFORM 
To illustrate the properties of polynomial transforms, 

we concentrate on the important special case that the local 
window function is Gaussian, i.e.,  

(17) 
1 

V ( x )  = ~ exp ( - x 2 / 2 u 2 )  

where the normalization factor is such that V2(x) has uni t  
energy. The orthogonal polynomials that are associated 
with V2(x) are known as the Hermite polynomials, and 
therefore we refer to the resulting local decomposition 
technique as the Hermite transform. 

The reasons for focussing our attention on Gaussian 
windows are manifold. First, the theory is mathematically 
tractable in this case, so that the properties of the Hermite 
transform can be easily derived and evaluated. The dis- 
crete Hermite transform, to be discussed in Section VIII, 
is a good approximation of the analog case, and will hence 
have very related properties. Second, Gaussian windows 
which are separated by twice the spread U are a good 
model for the overlapping receptive fields found in phys- 
iological experiments [ 1.51. Third, it will turn out that the 
Hermite transform involves filter functions that are deriv- 
atives of Gaussians. These functions have already found 
widespread use in computer vision [33] and psychophys- 
ical modeling of the human visual system [34]. Hence the 
Hermite transform provides a broader theoretical frame- 
work for these approaches. Last but not least, the Gauss- 
ian window minimizes the product of uncertainties in the 

spatial and frequency domain, which is an interesting 
property in image analysis [41]. 

In the following subsections, we will derive expres- 
sions for the different functions that play a role in the 
Hermite transform, i.e., the weighting function W ( x ) ,  the 
filter functions D,, ( x ) ,  and the pattern functions P, ( x ) .  
These expressions will subsequently be used to evaluate 
the filtering and aliasing effects introduced by taking finite 
transforms. 

A .  Properties of the Weighting Function 

Because the weighting function W ( x )  is periodic with 
period T ,  it can be expanded into a Fourier series, i.e., 

with 
m 

W ( X )  = 1 + 2 k =  C I exp -; (k $)'I 
cos (k F) . 

This result is derived in Appendix B. The contrast of this 
weighting function is determined by the sampling param- 
eter 7 = T / u .  Because we usually want to limit the num- 
ber of local decompositions, especially in coding situa- 
tions, it is advantageous to make 7 as large as possible. 
On the other hand, referring to ( 2 ) ,  we argue that W ( x )  
must be approximately constant. Otherwise, especially in 
a digital implementation, the postdivision by W ( x )  would 
introduce a space-variant sensitivity. In Fig. 2 ,  we have 
plotted the contrast of the weighting function, i.e., ( W (  0)  
- W (  T / 2 ) ) / (  W ( 0 )  + W (  T / 2 ) ) ,  as a function of 7. 
Note that for values of 7 up to 2 ,  the window function is 
approximately constant. 

B. Properties of the Filter Functions 

The filter functions determine which information is 
made explicit in the coefficients of the Hermite transform. 
The main properties of the Hermite transform are there- 
fore determined by these filter functions. From the gen- 
eral expression in (1  3) we derive that 

since the Hermite polynomials { H , , ( x / u ) ;  n = 0, 1, 
* ] are orthogonal over the Gaussian window V2(x) 
[39]. It is easily demonstrated [39] that the filter function 
D , ( x )  is equal to the nth order derivative of a Gaussian, 
i.e., 
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0 1 2  3 4 5 6 7 8 9 10 
7 

Fig. 2.  Contrast of weighting function as a function of T. The dotted line 
shows the contrast for the first harmonic. 

The Fourier transform has a very simple expression, i.e., 

. ( 2 2 )  1 n - ( w a ) ? / 4  d , , ( w )  = - ( j w o )  e m 
It has an extreme value for ( W O ) *  = 2n,  and hence filters 
of increasing order analyze successively higher frequen- 
cies in the signal. However, for large orders, the fre- 
quency peaks move very close together, so that successive 
filters give only very little additional information. There- 
fore, in practice, the Hermite transform will always be 
limited to a few terms. The effects of limiting the order 
of the Hermite transform will be discussed in the last sub- 
section. The filter functions for n = 0, - , 4 ,  together 
with their Fourier transforms, are shown in Fig. 3 .  

Researchers in human visual research have mainly con- 
centrated on Gabor functions for describing the process- 
ing in the retina and cortex. The main argument for Gabor 
expansions is that receptive field profiles can be modeled 
by Gabor functions. Because receptive field profiles are 
only known with limited precision, however, derivatives 
of Gaussians can be used equally well for modeling, as 
has been demonstrated in some recent studies 1351, 1421. 
They even have the advantage of requiring fewer param- 
eters. 

The past preference for using Gabor functions could be 
partly due to the fact that there exists a mathematical the- 
ory for the signal expansion into Gabor functions [ 1 1 1 ,  
[ 1 2 ] .  This theory is, however, in contradiction with the 
initial assumption that receptive field profiles are Gabor 
functions. The fundamental problem was already recog- 
nized by Daugman [50 ]  : ‘‘One disadvantage of the Gabor 
scheme is that the elementary expansion functions are not 
orthogonal with each other, and hence the correct code 
coefficients are not obtained simply by the usual inner 
product rule.” Hence, the theory of Gabor expansions 
does not even lead to receptive fields! Moreover, the 
biorthogonal function needed for determining the coeffi- 
cients of the Gabor expansion is discontinuous [ 121, an- 
other fact which is difficult to interpret from the point of 
view of visual perception. 
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Fig. 3.  Filter functions in spatial and frequency domain for U = 1 .  

The Hermite transform is an alternative signal expan- 
sion technique which leads to receptive field profiles that 
are derivatives of Gaussian. These filter functions can be 
interpreted very easily. In computer vision, a large body 
of literature has been devoted to examining the properties 
of derivatives of Gaussian filters [ 3 3 ] ,  [ 4 2 ] .  With the ex- 
ception of Hartley 1321, the interest has been mostly in 
either first- or second-order derivatives, however. The 
theory of the Hermite transform indicates that all deriva- 
tives can be important, depending on the local signal con- 
tent. Moreover, this theory also gives us an improved idea 
of how the outputs of different derivative operations can 
be used in combination. In the accompanying paper [51 ]  
we will go into this issue in more detail. 

C.  Properties of the Pattern Functions 
The pattern functions P , , ( x )  are required for resynthe- 

sizing the original signal from the coefficients of the Her- 
mite transform. They are given by the following analyti- 
cal expressions 

where w ( x )  is the weighting function of (19). 
If w ( x )  = 1, i.e.,  for sampling parameter values 7 < 

2, the pattern function P,  ( x )  is equal to the Hermite func- 
tion of order n. This implies that it is an eigenvalue of the 
simple harmonic oscillator problem 

r . .2  J 2  1 
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Fig. 4. Hermite functions for U = 1. 

Moreover, the Hermite function also has the property that 
it is isomorphic to its Fourier transform [39], i.e., 

T 
p , , (w)  = - - ( - j ) n H n ( w u ) e - ( a u ' 2 / 2  . ( 2 5 )  m 

1.257 R1 

1.25. Ro 

1 ' 3 ' '  

-5 

-1.25-1 

1.25 R3 1 7  
" " I X  

Hence, the plots in Fig. 4 can be considered to represent -5 5 

either the Hermite functions themselves or their Fourier 

tions and truncated sines and cosines indicates that the 

main difference with Gabor expansions is that the extreme 

transforms. The close resemblance between these func- -1.25 - 

Hermite transform is related to a harmonic analysis. The 1.25- R2 

values of a Hermite function have about equal amplitude, 
while Gabor functions have a Gaussian envelope. -5 5 

I-- I X  

D. Finite Hermite Transform -1.25 - 

In practice, the Hermite transform will often be limited 
to the first few terms. In order for the finite Hermite trans- 
form to describe the signal adequately, U must be properly 
selected. This is where the problem of scale comes in, 
because the optimum scale U depends on the local scene 
content. On the one hand, we want U to be as large as 
possible because integrating over large areas improves the 
output signal-to-noise ratio as well as the efficiency of our 
signal representation. On the other hand, U cannot be too 
large because then the signal cannot be described accu- 
rately by the first few terms in the Hermite expansion. 
The problem of selecting the right scale will be the main 
topic of the accompanying paper. 

To get some feeling for the effects of filtering and al- 
iasing that are introduced by the finite Hermite transform, 
we show some simulation results in Fig. 5 .  The input pat- 

, , , 

- x  
5 -5 

...... . . . . . . . . . . . . . 
-1.25 

(b) 

Fig. 5 .  Edge reproduction by finite Hermite transforms of order 0 to 3 for 
different edge positions. The dotted line is the input signal. 
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tern is a Gaussian edge with unity spread, i.e., y = erf 
(x) ,  where erf denotes the error function. The parameters 
of the Hermite transform are U = 1 and T = 2. In Fig. 
5(a), we show the output signal for increasing order of the 
Hermite transform in case the edge coincides with the 
center of an analysis window. In Fig. 5(b), we show the 
corresponding output signals in case the edge is located 
halfway between two analysis windows. These are the two 
extreme situations. Note that the approximation of the 
original signal improves with the order in both cases. The 
effect of aliasing in that the edge filtering is slightly de- 
pendent on the position of the edge, relative to the posi- 
tion of the analysis windows. This difference also de- 
creases with increasing order of the transform. 

IV. TWO-DIMENSIONAL POLYNOMIAL TRANSFORMS 
The polynomial transform technique can be easily gen- 

eralized to two dimensions. Given a local window func- 
tion V ( x ,  y ) ,  the orthonormal polynomials G,n .n- ,n (x ,  y ) ,  
where m and n - m are the degrees with respect to x and 
y ,  respectively, are uniquely determined by 

n + m  m+m 

(26)  = 6 . 6  . nr mj 

f o r n , i  = 0, 1, * . .  , m ; m  = 0, - e *  , n a n d j  = 0, 

The decomposition of 2D signals into localized poly- 
, i [43]. 

nomials becomes 

. . .  

m n  

where ( p ,  q )  ranges over all coordinates in a 2D sampling 
lattice S .  The only condition for the sampling lattice is 
that the weighting function 

is different from zero for all coordinates ( x ,  y ) .  

by convolving the image with the filter functions 
The polynomial coefficients Lln,n-,n( p ,  q )  are derived 

Q , , . n - m ( x 7  Y )  = Gm,ll-m( - x ,  - Y )  V’( - x ,  - Y >  (29) 

followed by a sampling of the output at ( p ,  q )  E S .  The 
pattern functions used for interpolating the polynomial 
coefficients are defined by 

P m . n - m ( x ,  Y )  = Gm.n-m(x7 Y > V ( X ,  Y ) / W ( X ,  Y )  (30) 
forn = 0, 1, * * , m a n d m = O ,  e - .  , n .  

It was argued in the introduction that an image analysis 
should aim at decomposing a signal into patterns that are 
perceptually important. It has long been acknowledged, 
especially in computer vision and visual perception, that 
local 1D patterns such as edges and lines play a central 
role in early vision. We establish here how the best local 
1D fit to an image can be found with the help of polyno- 

mial transforms. Using a weighted square error criterion, 
we minimize 

- L ( x ,  r)lL V 2 ( &  Y )  dY 

over all 1D patterns K and angles 0.  
We define the 1D window function 

+ m  

vi(u> = j v2(u cos e - z, sin e, 
- m  

u s i n 0  + u c o s 8 ) d v  (32)  

by projecting the 2D function V ’ ( x ,  y )  on an axis that 
makes an angle 0 with the x axis. This window function 
is independent of the orientation if V’ ( x ,  y )  is rotationally 
symmetric. We can expand the 1D pattern K(u) in the 
basis { Fn.@(u); n = 0, 1, * * } of orthonormal polyno- 
mials over V;(U), i.e., 

~ e ( u >  [ ~ ( u )  - I1 c = 0 K,,.e ~ , ~ , e ( u ) ]  = 0. (33) 

Substituting the 2D and 1D polynomial expansions for 
L ( x ,  y )  and K(u), respectively, in (31), and taking the 
partial derivative with respect to Kn,e results in the follow- 
ing optimum solution 

m 

I1 !i 

K . 0  = C C h.!i-/ . hn.e(l, k - 1 )  (34) 
x = o  / = o  

for the 1D pattern coefficients, where 

h l . o ( l ,  k - 1 )  = SI: ST Fll , , (x  cos 0 + y sin e )  

. G, . ! i - / (x ,  Y )  V2(x, Y )  dx d~ (35 )  

is an angle function that is completely determined by 

The orthogonal polynomials F,l. e ( u ) and the angle 
function can be determined without explicit knowledge of 
V , ( u ) .  Indeed, (4) implies that only the moments 

V 2 ( x ,  Y ) .  

+ m  

cll,8 = S u ” V i ( u ) d u  (36) 
- m  

are needed to fully specify the orthogonal polynomials. 
The calculation of these moments can however be based 
directly on V2(x, y ) ,  since 

c,,.@ = 1;: S ( x  cos e + y sin e) ”  ~ ( x ,  y )  dx d y .  
+ m  

- m  

(37)  

From the orthogonality of the polynomials F l l . s ( u ) ,  we 
can derive the following properties 

h, l .o ( l ,  k - I )  = 0 i f k  > n (38) 
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and filter function D,, ( r ) ,  with r the radial coordinate, and 
m h  

for the angle function. 
The ID approximation error 

m k  m 

can be minimized over the angle 0 by maximizing the di- 
rectional energy 

m 

where Kl, ,o  is determined by the 2-D polynomial coeffi- 
cients through (34). In practice, the first few terms in this 
directional energy measure are usually sufficient to make 
a good estimate for the optimum direction. Note that the 
directional energy is found by a simple combination of 
the 2D polynomial coefficients. This is computationally 
more efficient than using distinct filters for calculating the 
energy in every direction [IO],  [30], especially if a large 
number of directions are tried. 

If the original image L ( x ,  y )  is locally ID, then the 
estimation error must be zero for the optimum angle 8, so 
that the 2D polynomial coefficients must satisfy 

m 

If the image L ( x ,  y )  is not locally lD,  then the latter 
expression can still be used as an optimal ID approxi- 
mation for the 2D polynomial coefficients. 

v. TWO-DIMENSIONAL HERMITE TRANSFORM 

An interesting special case of 2-D polynomial trans- 
forms arises when the window function is separable, i.e., 
V ( x ,  y )  = V ( x )  V (  y ) ,  and the sampling lattice is square. 
The filter and pattern functions are then also separable, 
and can hence be implemented very efficiently. For ex- 
ample, the polynomial coefficients are found by convolv- 
ing the image with the filter functions D , n ( x ) D , , - , n (  y), 
where D , ( x )  is the 1D filter function for window V ( x ) ,  
followed by a sampling of the output in horizontal and 
vertical directions at multiples of the sample spacing T. 

The Hermite transform arises if the window function is 
Gaussian. An important advantage of Gaussian windows 
in two dimensions is that they have the unique property 
of being both spatially separable and rotationally sym- 
metric. The corresponding properties of the filter func- 
tions are that they are separable both spatial and polar. 
The Fourier transform of D,,, ( x )  D,, - ,,, ( y ) ,  expressed in 
polar coordinates U ,  = w cos 0 and a,. = w sin 0 ,  is 

COS’” e . sin”’” e (44)  

expresses the directional selectivity of the filter. Hence, 
filters of increasing order n analyze successively higher 
radial frequencies, i.e., higher spatial resolutions, simi- 
larly as in the ID case. Filters of the same order n and 
different (directional) index m distinguish between differ- 
ent orientations in the image. The relation with the gen- 
eral angle function of the preceding section is 

(45) 

which results in a substantial simplification over the gen- 
eral case. 

Daugman [45] has already demonstrated the importance 
of polar separable filters, i .e.,  filters that can be expressed 
as the product of a spatial frequency tuning function and 
an orientation tuning function. More specifically, only 
separable filters have the property of giving identical ori- 
entation tuning curves for different ID patterns, such as 
gratings, lines, and edges. This implies that these filters 
can detect the orientation of a 1D pattern, independent of 
its internal structure. 

VI.  THREE-DIMENSIONAL HERMITE TRANSFORM 

Although the polynomial transform technique of Sec- 
tion IV can be easily generalized to three dimensions, we 
restrict ourselves to some remarks for the case of the Her- 
mite trans form. 

The three-dimensional (3D) case refers to spatiotem- 
poral signals L ( x ,  y, t ) .  Since we use Gaussian filters in 
our transform with identical spread U along all dimen- 
sions, we have to agree on some equivalence between 
spatial and temporal dimensions. Therefore, we will map 
all spatiotemporal signals L ( x ,  y, f )  onto 3D signals L ( x ,  
y ,  z )  by setting z = u.t. The constant U has the dimension 
of a velocity. In many applications, such as sampled sig- 
nals, the equivalence parameter U is implicitly selected. 
Its choice can have far-reaching consequences, however, 
as it determines the velocity range to which the Hermite 
transform is most sensitive. There are indications that the 
human visual system contains two subsystems, one sen- 
sitive to high spatial and low temporal frequencies and the 
other sensitive to low spatial and high temporal frequen- 
cies [46]. This could be simulated by two Hermite trans- 
forms, one with small U and U ,  and one with large U and 

The definition of the 3D Hermite transform is straight- 
0. 

forward, i.e., 
m t i  J J J  

d f f l ~ ~ ~ ~ d f f - f f l ~ u ~ ~  = g f f l . l f - ! f f ( e )  . d, f (u )  (43) where the Hermite are derived from the orig- 
where d, , (w)  is the Fourier transform of the ID Hermite inal signal L ( x ,  y, z )  by convolving with the filter func- 
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tions D l ( x ) D , - I (  y ) D n - , , , ( z )  and sampling on a lattice 
S .  The Fourier transforms of the filter functions can be 
expressed in spherical coordinates wr = w cos 8 cos 4, w,  
= w sin 8 cos 4 and w: = w sin 6, i.e., 

d / (  W , ) d , n  - I (  W, . )d, ,  - ,n (U:) 

- 
- 8/,,,1-/(8) * g,,,.,,-,n(4) . d , , ( W )  (47) 

where d n ( w )  is the Fourier transform of the ID Hermite 
filter function D , , ( r ) .  The function g is identical to the 
one introduced in the previous section. We see that, next 
to directional selectivity, we now also get velocity selec- 
tivity into our filters. Indeed, the best fit of the original 
signal L ( x ,  y ,  z )  by a 1D pattern 

K (  ( x  cos 6 + y sin 8) cos 4 + z sin 4) (48) 
is found by maximizing the directional energy 

W w r I1 111 

over all ( e ,  4), provided the approximation error is 
weighted by V 2 ( x ,  y ,  z ) ,  of course. If the optimum 4 = 
7r/2 then the best 1D approximation is a purely temporal 
pattern. This includes, for instance, the case of uniform 
flicker. If the optimum 4 # a / 2 ,  then the best 1D fit is 
a pattern making an angle 8 with the x axis and moving 
with constant velocity. The velocity vector is ( --U tan 4 )  
- (cos 8, sin 8). 

The best 1D approximation of the 3D Hermite coeffi- 
cients is given by 

L n  - 1. I ,  - 111 = KII. 0. $ . g/,m - / (8  1 g,,,, ,I - 111 ( 4) (50 1 
forn  = 0 - 
( 8 ,  4 )  the optimum angles. 

03, m = 0 * * nand  1 = 0 . .  . m ,  with 

VII. DISCRETE POLYNOMIAL TRANSFORMS 

Up to now all signals and filters were assumed to be 
continuous. Practical applications of polynomial trans- 
forms require a formulation for discrete signals. We pre- 
sent two alternative ways of formulating discrete poly- 
nomial transforms. 

One possible approach is to link every discrete signal 
to an analog one, i.e., we can restrict ourselves to analog 
signals 

L ( x )  = C Lq * I ( x  - qA) (51 1 
4 

that are fully specified by a countable number of coeffi- 
cients L, through interpolation with I ( x ) .  Applying a for- 
ward polynomial transform to this signal results in the fol- 
lowing coefficients 

If Tis a multiple of the sampling distance, i.e.,  T = TAA, 
then the polynomial coefficients of order n are found by a 
discrete convolution of the sequence L ,  with the filter se- 

quence 

DI,,(s> = [D, t (x)  * wl,=qA (53) 

followed by a subsampling by a factor of TA. In practice, 
the subsampling can be combined with the filtering by 
only calculating part of the filtered outputs. 

We can, however, also define polynomial transforms 
directly on discrete signals, i .e.,  without requiring an ex- 
plicit link between analog and discrete signals. In the case 
of ID polynomial transforms, the results of Section I1 still 
apply. The expressions for the weighting, filter, and pat- 
tern functions are still valid, provided we replace the con- 
tinuous variable x by a discrete one. All integral expres- 
sions have to be changed into discrete sums however. For 
instance, (6) for the nth order moment must be replaced 
by 

c,, = c r x n  V 2 ( x )  (54) 

for n = 0, * . . , N .  If the discrete window is finite, i.e., 
V ( x )  = 0 for x < NI and x > N 2 ,  then the polynomial 
transform has a finite order N = N2 - N I .  Polynomial 
coefficients up to order N are then sufficient to get a per- 
fect reconstruction for any discrete signal. The reason is 
that the discrete signal within the window V ( x )  has only 
N + 1 degrees of freedom. 

In the case of 2D polynomial transforms, most of the 
results for analog images can be adjusted in a straightfor- 
ward way to discrete images. However, some care must 
be taken in applying the local ID approximation tech- 
nique of Section IV. The complication comes from the 
fact that in projecting the function V 2 ( x ,  y )  on an axis 
making an angle 8 with the x axis, i.e., 

V;(U) = C v 2 ( u  cos 8 - v sin 8, 
I '  

U sin 8 + v cos 8) ( 5 5 )  

only the sampling points have to be considered in the pro- 
jection. Hence, U and v assume only the values 

U = x cos 8 + y sin 8, v = - x  sin 8 + y cos 8 

( 5 6 )  
where x and y range over all (integer) values for which 
V ( x ,  y )  is nonzero. The smoothest window functions are 
usually obtained by selecting the angle 8 such that the 
projection lines pass through as many sampling points as 
possible, see Fig. 6.  

Application of the 1D approximation technique re- 
quires knowledge of the angle function 

h , , , O ( / ,  k - I )  = C F, , ,O(x  cos 8 + y sin 8) 
I. I 

where F n . O ( u )  is the orthonormal polynomial of order n 
over the 1 D window V i  ( U). 

VIII. DISCRETE HERMITE TRANSFORM 
In this section, we derive the discrete equivalent of the 

Hermite transform. It is well known that the discrete 
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where 
11 

( - l )"Af 'L(x)  = ( - l ) 'Cf ,L(x + k )  (64) 

is the nth order difference operator [39]. Taking the z 
transform of this filter function results in 

!, = o  

M / Z  

d f l ( z )  = D,,(x)z-'  
I = - M / Z  

or, expressed in angular frequencies 
Fig. 6. Discrete angles on a 2D square sampling grid. 

d, , (e - '")  = a ( j  sin i)f' (cos i)M-ll (66) 

counterpart of a Gaussian window is a binomial window, 
. -  f o r n  = 0 ,  . . .  , M .  It is obvious that for small U this 

1 
2 

I . C . ,  

VZ(.r) = 3 c;, filter reduces to an nth order derivative operation, just as 
( 5 8 )  in the analog case. 

fo rx  = 0, . . . , M .  The (discrete) orthonormal polyno- 
mials that are associated with this window are known as 
Krawtchouk's polynomials 

forx,  n = 0, . . . , M 1381. 

a Gaussian window. More specifically, 
For large values of M ,  the binomial window reduces to 

(60) 
forx = - ( M / 2 ) ,  . , M / 2 .  It can be shown [38] that 
the same limiting process turns a Krawtchouck polyno- 
mial into a Hermite polynomial, i .e.,  

The above filters have the important practical advan- 
tage that they can be realized by a cascade of the simple 
fitlers z - ' ( l  + z12 ,  z - ' ( 1  - z ) ( l  + z ) ,  z - ' ( l  - z ) ? ,  
with respective filter kernels [ 1 2 11, [ - 1 0 I ] ,  and 
[ 1 - 2  1 1 .  Hence, with the exception of the amplification 
factor c h ,  these filters can be realized without general 
multiplications [47]. 

The calculation of the angle function hlr,8 is a straight- 
forward application of (56) ,  although the calculations may 
be quite lengthy for large n.  Substantial deviations from 
the angle function of the analog Hermite transform, given 
in (44), will, however, only occur if M is small. In most 
applications, we will only be interested in the angle func- 
tion for small n.  Explicit expressions for n = 0, 1 ,  2 
are given below 

r -  
I l ( j ) .  (61)  

Hence, the discrete Hermite transform of length M ap- 

A , . @ (  I ,  0)  = COS e 
hl.o(O, 1 )  = sin e 
h2,8(O, 0)  = 0 

h?.B(1, 0) = 0 

hZ.B(O, 1 )  = 0 

h , J ( 2 ,  0 )  = cos2 e 

proximates the analog Hermite transform of spread U = 

can therefore be predicted quite accurately from the cor- 
responding properties of the analog Hermite transform. 

We concentrate on the case that M is even. The filter 
and pattern functions can then be centered on the origin 
by shifting the binomial window over M / 2 .  This leads to 
the following definition for the filter functions of the dis- 
crete Hermite transform 

h@. The properties of the discrete Hermite transform 

I 

for x = - ( M / 2 ) ,  . . . , M / 2 .  These functions can be 
expressed as 



MARTENS: THE HERMITE TRANSFORM-THEORY 1605 

which, using the same property as in Appendix A, leads 
immediately to ( 19). 
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