
Neurocomputing 57 (2004) 125–134
www.elsevier.com/locate/neucom

Sparse spike coding in an asynchronous
feed-forward multi-layer neural network

using matching pursuit

Laurent Perrineta ;∗ , Manuel Samuelidesa , Simon Thorpeb
aONERA/DTIM, 2, av. �E. Belin, Toulouse 31055, France

bCerveau & Cognition (UMR 5549), 133, rte. de Narbonne, Toulouse 31062, France

Abstract

In order to account for the rapidity of visual processing, we explore visual coding strategies
using a one-pass feed-forward spiking neural network. We based our model on the work of Van
Rullen and Thorpe Neural Comput. 13 (6) (2001) 1255, which constructs a retinal represen-
tation using an orthogonal wavelet transform. This strategy provides a spike code, thanks to a
rank order coding scheme which o2ers an alternative to the classical spike frequency coding
scheme. We extended this model to e4cient representations in arbitrary linear generative mod-
els by implementing lateral interactions on top of this feed-forward model. This method uses a
matching pursuit scheme—recursively detecting in the image the best match with the elements
of a dictionary and then subtracting it—and which may similarly de6ne a visual spike code.
In particular, this transform could be used with large and arbitrary dictionaries, so that we may
de6ne an over-complete representation which may de6ne an e4cient sparse spike coding scheme
in arbitrary multi-layered architectures. We show here extensions of this method of computing
with spike events, introducing an adaptive scheme leading to the emergence of V1-like receptive
6elds and then a model of bottom-up saliency pursuit.
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1. Toward an e�cient dynamical representation

1.1. How to break the code of vision?

Between neuroscience and neuromorphic engineering, our goal is to understand pos-
sible spike coding strategies in the central nervous system. In particular, faced with
the light inEux from the physical world, what are the strategies in a visual system
to extract and transmit the relevant features from the eye to the desired output? The
physiology of the neurons, the architecture of the visual system and the statistics of
the light inputs are as many constraints on the visual system, and a key challenge is
to “break” the code of vision.
In particular, the e4ciency of a strategy, e.g. for an animal to categorize prey and

predators as quickly as possible, is a main evolutionary constraint on the visual system.
Experiments of ultra-rapid categorization [7] in humans and monkeys have showed
that the visual system could distinguish high-level categories in as short as 150 ms.
It suggests to us to move from the analogy of the visual system with classical image
processing strategies to more e4cient dynamical neural network models.
This paper will at 6rst present an alternative strategy to the classical paradigm which

states that analog retinal activity is coded by the spikes’ 6ring frequency. We will
show how to code the analog values solely by the relative rank of their latency, so
that the image is coded by a parallel wave of single spikes. But this model is highly
constrained by its architecture and we will then present an extension of this method
to arbitrary architectures by the implementation of lateral interactions. Finally, this
strategy is extended to a model of sparse spike coding in a multi-layer neural network.
We show applications to model the visual system and especially the transform in the
columnar organisation of the primary visual cortex (V1).

1.2. Analog to spike coding in the retina

As described in Van Rullen and Thorpe [9], let us 6rst de6ne our model retina as
a multi-layered structure characterized by a set of neurons, the ganglion cells (GCs),
sensitive at di2erent spatial scales to the local contrast of the image intensity detected
at the photo-receptors. The neurons are de6ned by their position and scale as dilated,
translated and sampled Mexican hat (or di2erence of Gaussian DOG) 6lters (see [3,
p. 77]). They are placed uniformly over dyadic scales grids, i.e. growing over both
axis as powers of 2. The dendrite of a neuron i may be characterized by its weight
vector �i over its receptive 6eld and the activity at the soma of the neuron is the usual
dot product:

Ci := 〈I; �i〉=
∑
l̃∈Ri

I (̃l) : �i (̃l); (1)

where I (̃l) is the luminosity at pixel l̃ and Ri is here the receptive 6eld of the neuron
i. At 6rst, this architecture is tuned to form an orthogonal wavelet transform [3] of
the image, so that responses of di2erent 6lters are uncorrelated (i.e. 〈�i; �j〉 = 0 for
i �= j).
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Thus, a static image is transformed into a multi-scale representation of analog con-
trasts. Under the assumption of orthogonality, these analog values are theoretically
su4cient to reconstruct the image with a compact number of active coe4cients. Due
to its performance, this representation is often used in image processing algorithms.

1.3. A visual spike code in the optic nerve

When presenting an image at an initial time, each neuron of the model integrates
the recti6ed analog contrast information at its soma until it reaches a threshold: 1 it
then emits a spike—the more it is activated, the more the spike is 6red rapidly—
that propagates along the axon and its activity is resetted. Classically, this generates a
pattern of spikes whose instantaneous frequency may constitute the image’s code.
But the spike code may also be carried by the exact spiking time (or latency) of the

6rst spike. To focus on this transient aspect of the neural code, we will consider solely
this spike and show how this part of the signal may e4ciently carry the neuronal
signal. In this extreme case, the code solely consists of the latency for each of the
di2erent 6bers i which is inversely proportional to the neuron’s excitation current, i.e.
to the corrected activity. This algorithm de6nes a coding scheme from an analog matrix
to a spike ‘wave front’ which will travel along the optic nerve. But, how to decode
the analog information attached to every spike?
Though biologically highly unrealistic, we will rate the quality of the image recon-

struction by the wave front as an upper bound of information transmission. We will
therefore record the spike wave generated by this model retina and in our framework,
since the wavelet transform is orthogonal, the image may be simply reconstructed by
the coe4cients’ values:

Irec ∼
∑

i

|Ci| : pi : �i:

This framework de6nes thus an algorithm for the progressive reconstruction of the
image by iteratively transmitting coe4cients with higher energy 6rst. It achieves perfect
reconstruction toward the original static image if the architecture is orthogonal 2 and
that the coe4cients are known. But how to transmit these analog coe4cients’ absolute
values along the optic nerve using the spike wave?
In fact, Van Rullen and Thorpe [9] have shown that these values observe regularities

as a function of their rank across natural images. This regularity is due to the regular
distribution in natural images of singularities of di2erent orders (i.e. in order: dots,
lines, ramps, gradients) which are related to the wavelet coe4cients (see Mallat [3,
p. 513]) and which are ordered from the highest to the lowest in this algorithm. A
solution is therefore to use the mean analog value to form a look-up table (LUT) to
decode the analog values from their rank. However, we proved [6] that this regularity is
enhanced if each scale is tuned so that the LUT corresponding to the di2erent scales add
up harmoniously according to the statistics of natural images [1]. This is done by tuning

1 Instead of di2erentiating ON or OFF cells, we will consider for simplicity that each neuron i is assigned
a polarity pi which is either +1 or −1, so that the coe4cients are recti6ed (i.e. |Ci| = pi : Ci).

2 This condition is approximately met in Van Rullen and Thorpe [9].
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the norm Ni of the 6lters so that the coe4cients appear with the same distribution at
every scale. Finally, this proves that this strategy builds a complete and e4cient code
from the retina (analog to spike coding) which we may decode (spike to analog coding)
using solely the rank of the spikes in the wave front, i.e. a rank-order coding scheme
[7]. This strategy thus forms a compact spike code for static image representation.

2. Constructing lateral interactions

2.1. Orthogonal vs. non-orthogonal representations

The condition on the 6lters for a perfect reconstruction, i.e. the orthogonality of
the dictionary used to represent the image—is a strong constraint on the architecture
and is achieved only approximatively with the model presented in [9], resulting in
a small information loss. Moreover, in the biological retina, the architecture is not
dyadic and neighboring biological neurons most often have correlated sensitivities.
The orthogonality condition is therefore too restrictive in order to build a biologically
inspired model of the retina but also to apply the algorithm in further models in the
primary visual system where the interdependence is even stronger.
More importantly, this representation is sensitive to usual transformations as small

translations or rotations. In fact, in order to code the image in a more stable way,
we may want to use an over-complete representation of the image, i.e. for which the
number of 6lters is far greater than in the previous model. But applying that repre-
sentation with a similar wavelet architecture would yield a highly redundant code, and
we rather need that it de6nes a sparse code, i.e. that the model’s coe4cients absolute
values rapidly decrease [5]. But mathematically optimizing the linear generative model
leads to a combinatorial explosion of the freedom of choice of the 6lters and of their
corresponding coe4cient values (it is a NP-hard problem [3]).

2.2. Spike coding using a matching pursuit

Another strategy is to use a matching pursuit (MP) [3, pp. 412–419] algorithm,
which is derived from a statistics’ estimation algorithm and was also extended to
wavelet theory [4]. The idea is that we have to account for the correlations between
6lters and we therefore need to build up lateral interactions to cancel the correlation
whenever a 6lter is selected.
The MP algorithm decomposes the image over a dictionary D by iteratively choosing

the best match and then—in order to minimize the residual energy knowing this match
—removing the orthogonal projection of this match. Let us initially set the initial
residual image I 0 := I and activities C0

i := Ci at the initial time t = 0. First, we
determine the 6rst neuron in the layer to 6re as the most activated

i0 = ArgMaxi(|C0
i |)

and for this neuron of index i0, we de6ne the corresponding extremal contrast value
C0

i0 . Actually, we found the best match in the sense of the projection of the image on
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the dictionary, so we subtract the projection of this match to I 0 in order to de6ne a
6rst residual I 1 at time t = 1.

I 1 = I 0 − 〈I
0; �i0〉
‖�i0‖2

· �i0 = I 0 − C0
i0

N 2
i0
· �i0 ;

where Ni0 denotes the norm of 6lter i0. Assuming the existence of fast interneuronal
pathways, the activity may be directly updated at time t = 1 from Eq. (1):

C1
i = 〈I 1; �i〉= C0

i −
C0

i0

N 2
i0
· 〈�i0 ; �i〉:

In particular C1
i0 =0, i.e. the activity corresponding to the best match at time 0 is totally

canceled at time 1. In neuronal terms we do not need to update the image’s intensities
(backward propagation) but directly the activities (lateral propagation). Iterating these
steps, we may repeat this algorithm to obtain successive residuals at the discrete times
t de6ned by the algorithm. This algorithm is exactly equivalent to MP for normalized
6lters (Ni = 1) and presents the same computational complexity and properties [3,
pp. 412–419] and in particular the convergence of the reconstruction [3, p. 414].
As with the wavelet transform, it may be similarly translated to a spike coding

scheme by associating to each step the 6ring of a spike, so that it is simply for t¿ 0,{
it =ArgMaxi∈D(|Ct

i |)
Ct+1

i = Ct
i − pt : mt : 〈�it ; �i〉

with mt = |Ct
it |=N 2

it and pt is the sign of Ct
it (i.e. its ON or OFF polarity). We therefore

associate to each spike a lateral interaction 〈�it ; �i〉 which accounts for the selected
spike. The reconstruction is then simply

Irec(T ) =
∑

t=0;:::;T

pt : mt : �it :

The choice of a match is fed back to the neurons’ activities as a lateral interac-
tion proportional to pt : mt and to the correlation between the 6lters 〈�it ; �i〉. With an
over-complete dictionary, this coding strategy provides a sparse representation of the
signal. In comparison with a wavelet decomposition, since the choice of the nth 6lter
depends on the spike list for the previous times, this transform is non-linear.

2.3. Rank order coding with MP

To compare this algorithm with the model of Van Rullen and Thorpe [9], we kept
the same architecture and observed the behavior of the absolute coe4cients’ values in
function of the rank of propagation for di2erent natural images drawn from a database
of indoor and outdoor scenes. Similarly as the previous model, we observed regularities
across natural images and that this behavior showed up to be stable allowing the similar
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Fig. 1. Rank order coding with MP in the model retina. For the architecture de6ned in [9] we calculated (A)
mean squared error and (B) mutual information of the reconstruction in function of the relative rank (the
percentage of the number of spikes 6red to the total number of neurons) for the di2erent coding strategies,
comparing (Theo) the theoretical reconstruction from the orthogonal wavelet coe4cients, (Lut) the orthogonal
wavelet coding using a LUT as in [9], and (Adapt) MP with online learning (the image database consisting
of 100 images to learn the modulation function and 100 images to measure the reconstruction error). The
adaptability of the MP algorithm enhances the transmission of the image and proves the possible use of
the relative order of the action potentials as a code in the optic nerve.

use of a LUT to decode the analog value by its rank. Moreover, we used an incremental
adaptive rule which has the advantage of being more biologically plausible and enabling
on-line learning. This rule takes the form of a stochastic algorithm so that after coding
the nth image using m(n) as a modulation function,

m(n+1)(t) = (1− �(n)) : m(n)(t) + �(n) : |Ct
it |;

where t is as before the discrete time corresponding to the decomposition and �(n)

(typically, �(n) =1=n) the stochastic learning gain. Practically it shows similar behavior
as the LUT and leads to a similar reconstruction error.
Using the mean absolute coe4cients as a LUT, we thus built a mechanism of re-

construction from the spike list, but as opposed to [9], this algorithm is adaptive and
therefore the error may be compensated dynamically. Though 6lters are almost ortho-
gonal (so that lateral interactions between 6lters—i.e. their correlation—is relatively
low) the MP algorithm introduces a gain in the sparsity of the coe4cients but also in
the reconstruction quality (see Fig. 1).

3. Sparse spike coding

3.1. Extension to a multi-layer spike code

To model the multi-layered architecture of the visual system, we may easily extend
this strategy to a multi-layer architecture. In fact, since the activity at the synapses of the
neurons of the 6rst layer may be incrementally constructed as L(t+1)=L(t)+pt : mt�it ,
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and the activity C2; j at the second layer consisting of the neurons j can directly be
incrementally computed at retinal time t as

C2; j(t + 1) = 〈L(t + 1);  j〉= C2; j(t) + pt : mt : 〈�it ;  j〉;
where  j is the weight vector of neuron j (e.g. orientation selective in V1) and so that
we do not need to compute nor reconstruct the intermediate image L(t). By de6ning an
appropriate threshold for this activity, we may build a spiking mechanism and initiate
lateral interactions similar to MP, so that at the t′th 6ring in V1 of a neuron jt

′
, the

activity is updated as

C2; j(t′)← C2; j(t′)− C2; j′(t′) :

〈
 jt′

N 2
2; jt′

;  j

〉
;

where N2; j = ‖ j‖. This scheme is still similar to MP (in particular C′
j′(t

′ + 1) = 0)
and its convergence theorem still holds.
We applied this algorithm with an over-complete dictionary, similar to the set of

6lters observed for the simple cells of the primary visual area, V1 (in humans the
number of GCs is of the order of one million as for V1 the number it is approximately
300 million). Subsequently, we used the same method with a set of weight vectors  j

de6ned as dilated, translated and sampled DOG and Gabor 6lters (see [3, p. 160]).
The scale grows geometrically with a factor � = 5

√
2 (i.e. 5 layers per octave) on 41

scales and the direction is circularly NULL (i.e. a DOG), 0, �=4, �=2 and 3�=4. The
resulting distribution of the coe4cients is highly kurtotic and the LUT were tabulated
in the same manner, 3 so that the information rate—i.e. the information needed to code
the address of one spike—is in this layer ∼ 16:1bit/spike. Convergence is quicker (see
Fig. 2) so that this code may be compared to JPEG at high compression gains as
we have shown in [6].

3.2. Propagation heuristic: dynamical saliency

The sparse spike coding algorithm introduces a computation by events, here the neu-
rons’ action potentials, which introduces new techniques and algorithms to dynamically
process the data Eow and which may be enlarged to other events as collective bursts
of populations of neurons. Even for our simple test case, coding a static image, chang-
ing the priority of events may modify the progressive transmission of the di2erent
components of the image, hence its processing.
In particular, it is possible to modify the spatio-temporal spike pattern by modifying

the sensibility of some neurons over others, that is here by modifying the norm of
the neurons in space [8]. At 6rst, by giving more weight to the attended part of the
image, we force these neurons to 6re 6rst. We may extend this model of an attentive
mechanism by selecting in an unsupervised manner the attended region in function of

3 Regularity for these 6lters in natural images is observed if their mean spectral energy is rotation in-
variant. Systems for urban images which typically show more horizontal and vertical lines should be tuned
accordingly.
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Fig. 2. Spike coding in the Retina and in V1. (A) We computed recursively the LUT for the model of the
retina and for the model of V1 as a function of the rank (in percentage of the total number of neurons).
In comparison with the retina, coe4cients decrease more rapidly for the model of V1. (B) MSE for the
corresponding progressive image reconstruction (using logarithmic y-axis) de6ned by using this spike code.
The rapid convergence for V1 proves that we de6ned an e4cient visual code using an over-complete set of
Gabor 6lters and which leads to a model of a sparse spike code.

original image
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Fig. 3. Attentive mechanism. The MP algorithm, implementing the propagation in V1 of (Left) the ‘Sailboats’
image, was modi6ed by a simple propagation heuristic favoring neurons in the vicinity of the previous
6rings. For illustration purpose we reconstructed (top row) a dynamic saliency map similar to [2] showing
the coe4cient’s energy image during the propagation (resp. from left to right for 10, 250, 500, 1000 and
3000 spikes). The maximum progressively shifts from one boat to the other and then to the background.
The propagation is modi6ed so that (bottom row) the reconstruction corresponds to a bottom-up attentive
mechanism, revealing the corresponding objects. This propagation, compared to [2], permits the reconstruction
of the image while using a much simpler architecture and avoiding an arbitrary de6nition of the inhibition
of return by the implementation of the lateral interactions.

the 6ring history. For instance, at a step of the MP algorithm, instead of choosing the
best match over all possible neurons, the match at time t should be chosen as

it =ArgMaxi∈D(|Ct
i |+ �‖i − it−1‖);

where � is a regularization constant and ‖i − j‖ is a distance measure between two
neurons. Results show that this simple heuristics models a bottom-up model of visual
attention (see Fig. 3, top row) by de6ning a dynamical saliency map which progres-
sively reconstructs the image according to the attention areas (see Fig. 3, bottom row).
This property may be useful for pattern recognition and especially when dealing with
huge amount of data.
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Fig. 4. Emergence of 6lters using an adaptive scheme. We simulated the propagation of the visual informa-
tion through the retina and then through a second layer the 6lters of which are initially randomly set. By
reinforcing the receptive 6elds of neurons toward the patch that elicited the 6ring of a neuron, we progres-
sively extract primitives of the image which compete through the MP algorithm. Using the same protocol as
Olshausen and Field [5], V1-like orientation selective 6lters similarly emerge, but the parallel propagation
avoids the formation of doubles. These 6lters are therefore naturally centered and distinct.

3.3. Adaptive schemes

Following the analogy of MP with vector quantization, we may also construct a
simple adaptive scheme for the 6lters using a modi6ed Lloyd algorithm. We used the
same protocol as Olshausen and Field [5] in a multiscale architecture (using a Gaussian
pyramid) and progressively learned at each spike in this layer the 6lters toward the
patches IRt′ in the image that elicited the response of neuron jt

′
at time t′.

 jt′ ←  jt′ + � : C′
j′(t

′) : IRt′ ;

where � is the learning factor. We compared this algorithm with the Sparsenet scheme
[5]. Even if similar in spirit (looking for a dictionary allowing for sparse coding),
these algorithms di2er in the sense that Sparsenet is biologically unrealistic but uses
an e4cient analytical optimization algorithm. Furthermore, it works on random im-
age patches whereas we do not choose a priori a patch in the image but we rather
progressively decompose the image in a parallel and asynchronous competition (see
Fig. 4).

4. Conclusion

We have shown that we may de6ne a complete spike code based on an arbitrary
over-complete dictionary using lateral interactions de6ned by a MP algorithm and that
this code is both e4cient and sparse as is observed in the primary visual system.
Experiments show the importance of the statistics of natural images as a chief constraint
on the tuning of this algorithm to achieve good and sparse representation.
The sparse spike code algorithm leads to a general adaptive model of cortical pro-

cessing which leads to a model of an ensemble of cortical neurons, the cortical column,
as an autonomous multi-state automaton with strong interactions with neighbors and
associated areas.
Finally, these algorithms advocate for a dynamical model of visual processing and

provide a necessary extension of the rank order coding scheme by providing an e4cient
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representation for visual tasks. This could provide e4cient real-time applications using
arti6cial asynchronous neural network which could mimic nature’s performance.
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