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Abstract 

The analysis of the sky shows many kinds of hierarchically distributed objects. We have introduced a multiscale vision 
model based on the wavelet transform. The discrete transform is performed by the ir trous algorithm which furnishes an 
isotropic vision, with a unique wavelet function. The vision model is based on the notion of the significant structures. We 
identify the pixels of the wavelet transform space (WTS) we can attribute to the objects. At each scale a region labelling is 
done. An interscale connectivity graph is then established. Connected trees are identified from the preceding graph. An 
object is generally associated to a subtree built from this graph. The identification of WTS pixels related to a given object 
leads to reconstructing an image by partial restoration algorithms. The object properties are extracted from the restored 
image. The main difficulty lies in the object reconstruction knowing the wavelet coefficients in the volume where the 
object is defined. It is a classical inverse problem. We choose to solve it using iterative algorithms. These algorithms give 
correct restored images, as we show on different examples, without or with adding a Gaussian noise. The influence of 
close objects can be partially removed. 

Zusammenfassung 

Die Analyse des Himmels zeigt viele Arten hierarchisch angeordneter Objekte. Wir haben ein Polyskalen-Model1 fur 
das Sehen auf der Grundlage der Wavelet-Transformation eingefiihrt. Die diskrete Transformation wird durch den 
ir trous-Algorithmus durchgefiihrt, welcher eine isotrope Ansicht liefert, mit einer eindeutigen Waveletfunktion. Das 
Model1 fiir das Sehen beruht auf der Angabe der kennzeichnenden Strukturen. Wir identifizieren die Pixel im Wavelet- 
transformationsraum (WTS), die wir den Objekten zuordnen konnen. Bei allen Skalenwerten werden die Regionen 
markiert. Dann wird ein Interskalen-Zusammenhangsgraph aufgebaut. Verbundene BHume werden vom vorangegan- 
genen Graphen her identifiziert. Im allgemeinen wird ein Objekt mit einem Teilbaum in Verbindung gebracht, der aus 
diesem Graph gebildet wird. Die Identifikation von WTS-Pixeln, die mit einem bestimmten Objekt zu tun haben, ftihrt 
auf die Rekonstruktion eines Bildes durch Teil-Restaurationsalgorithmen. Die Objekteigenschaften werden aus dem 
restaurierten Bild extrahiert. Die Hauptschwierigkeit liegt in der Objektrekonstruktion, wenn die Waveletkoeffizienten in 
dem riiumlichen Gebiet bekannt sind, in dem das Objekt definiert ist. Es handelt sich urn ein klassisches inverses 
Problem. Wir wahlen iterative Verfahren zu ihrer Losung. Diese Algorithmen liefern korrekt restaurierte Bilder, wie wir 
anhand verschiedener Beispiele zeigen, ob nun ein gaugsches Storrauschen addiert wird oder nicht. Der Einflul3 dicht 
benachbarter Objekte kann teilweise beseitigt werden. 
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L’observation du ciel met en ividence de nombreux types d’objets distributs hikrarchiquement. Nous avons introduit 
un modkle de vision multitchelles bask sur la transformation en ondelettes. La transformation disc&e est r&alike par 
l’algorithme b trous, lequel permet une vision isotrope, avec une seule fonction ondelette. Le modkle de vision est fond6 
sur la notion de structures significatives. Lex pixels de l’espace de la transformation en ondelettes (WTS), pouvant Ctre 
attribds aux objets, sont identifiks. A chaque Cchelle, une procCdure de segmentation est appliquke. Un graphe 
d’inclusion des domaines d’une tchelle g l’autre est alors Ctabli, A partir de ce graphe, on identifie des arbres connexes. 
A chaque sous-arbre du graphe d’inclusion, est associk gkniralement un objet. L’identification des pixels du WTS 
attribds g un objet donni, conduit g reconstruire une image, g&e g des algorithmes de restauration partielle. A partir de 
ces images, on peut alors extraire les proprittks des objets. La principale difficultk r&side dans la reconstruction de l’image 
d’un objet connaissant le volume de coefficients en ondelettes oti il est dbfini. C’est un problkme inverse classique. Nous 
avons choisi de le risoudre en appliquant des algorithmes ittratifs. Ces algorithmes donnent des images restaurkes de 
bonne qualiti, tout $ fait utilisables, comme le montrent diffkrents exemples avec ou sans bruit additif gaussien. 
L’influence des objets proches peut i?tre partiellement supprimte. 

Keywords: Multiscale vision; Wavelet transform; Image processing; Image restoration 

1. Artificial vision and astronomical images 

The astronomical images contain typically a 
large set of point-like sources (the stars), some 
quasi-point-like objects (faint galaxies, double 
stars, etc.) and some complex and diffused struc- 
tures (galaxies, nebulous, planetary stars, clusters, 
etc.). A vision model is defined by the sequence of 
operations required for the automated image ana- 
lysis. Astronomical images need specific ones which 
take into account the scientific purposes, the char- 
acteristic of the objects and the existence of hierar- 
chial structures. 

The classical vision model for robotic and indus- 
trial images is based on the detection of the edges. 
We have applied first this conception to the astro- 
nomical imagery [4]. We choose the Laplacian of 
the intensity as the edge line. The results are inde- 
pendent of large-scale spatial variations, such as the 
ones due to the sky background. The main disad- 
vantage of the resulting model lies in the difficulty 
to get a correct object classification: astronomical 
sources cannot be accurately recognized from their 
edges. 

Many reduction procedures were built using 
a model for which the image is the sum of a slowly 
variable background with superimposed small- 
scale objects [24,22]. We build first a background 
mapping [2]. For that purpose we need to intro- 
duce a scale: the background is defined in a given 

area. Each pixel with a value significantly greater 
than the background is considered to belong to 
a real object. The same label is given to each signifi- 
cant pixel belonging to the same connected field. 
For each field we determine the area, the position, 
the flux and some pattern parameters. Generally, 
this procedure leads to quite accurate measure- 
ments, with a correct detection and recognition. 
The model works very well for poor fields. If this is 
not the case, a labelled field may correspond to 
many objects. The background map is done at 
a given scale: larger objects are removed. The 
smoothing is only adapted to the star detection, not 
to larger objects. 

An improvement of the previous model is 
done with the introduction of the radial profile of 
each source [13, 211. An astronomical object is 
associated to a point-like structure. We have thus 
only to detect the local maxima. The radial profile 
contains the main information on the source struc- 
ture. Compared to the previous models, the quality 
of the measurements is increased, and the derived 
pattern parameters allow a gain in the separation 
between the stars and the galaxies. This procedure 
does not allow to describe complex structures. The 
method is adapted to quasi-stellar sources, on 
a slowly varying background. 

In fact, the three vision models we used on many 
sets of images failed to bring a complete analysis 
because they are based on a single spatial scale for 
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the adapted smoothing and for the background 
mapping. A multiscale analysis allows to get 
a background adapted to a given object and to 
optimize the detection of different size objects. We 
expected that the wavelet transform was the tool 
allowing us to build an analysis taking into account 
all the constraints. 

2. The multiscale approach 

2.1. The continuous wuvelet transform 

Morlet-Grossmann”s [16] definition for a 1D 
function ,f(x) E L2(R) is 

(1) 

9(x)* designs the conjugate of the analyzing 
wavelet II/(x), a (> 0) the scale parameter and b the 
position parameter. The wavelet transform is a 
linear transformation, covariant under translations 
and dilations. 

Consider now a function w(a, b) which is the 
wavelet transform of a given functionf(x). It was 
shown [9] that f(x) can be restored with the 
formula 

with 

c,= -, 
j 

+m16(v)12dv 
0 V 

where G(v) designs the Fourier transform of II/(x). 
The reconstruction is only correct if C, is defined 
(admissibility condition). This is generally true if 
t+&(O) = 0, i.e. the mean of the wavelet function is 0. 

Many 2D extensions of the continuous wavelet 
transform are possible: from identical dilations on 
coordinates, using an isotropic wavelet function, 
from dilations independently for each axis, from 
identical dilations, with rotations of the wavelet 
pattern in Fourier space, using an anisotropic 
wavelet function [ 171, from independent dilations 

and rotations. The dimension of the resulting trans- 
form depends on the choice: 3 for the first one, 4 for 
the two following ones, and 5 for the last one. This 
is one of the reasons which led us to choose an 
isotropic wavelet. Another reason lies in the phys- 
ical data interpretation, an isotropic wavelet trans- 
form provides an isotropic vision and easily under- 
standable parameters. 

2.2. The discrete wavelet transform from 

the multiresolution analysis 

The use of the wavelet transform with a com- 
puter can be foreseen through the sampling 
theorem [S]. The wavelet transform is a set of 
convolutions, so if we process an image with 
a cutoff frequency, we just have to do some multi- 
plications in the Fourier space. The number of 
elements for a scale can be reduced if the frequency 
bandwidth is also reduced. This is correct only for 
wavelets having also a cutoff frequency. Little- 
wood-Paley’s decomposition [14J, based on an 
iterative dichotomy of the frequency band, provides 
a very nice illustration of the reduction of elements 
scale by scale. 

The multiresolution analysis [15] is an extension 
of Littlewood-Paley’s decomposition to a large 
class of wavelets. It is based on an increasing se- 
quence of closed linear subspace Vi of L2(R), where 
i is an integer. A functionf(x) is projected at each 
step i on the subset Vi. This projection is defined by 
the scalar product c(i, k) off(x) with the function 
4(x) which is dilated and translated: 

4(x) is named the scaling function of the analysis. 
Its main property lies in the following relation 
(dilation equation [25]): 

;4(;) = f h(n)+@ - n). 
n=ll, 

(5) 

This relation allows to compute the set (c(i, k)} 
from (c(i - 1, k)): 

c(i, k) = f h(n - 2k)c(i - 1, n). (6) 
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The coefficients c(i, k) are obtained iteratively by 
convolution with the low-pass filter h(- n), fol- 
lowed by a decimation. For some scaling functions 
ni and n2 are limited, and we have a classical FIR 
filtering. At each step, the number of scalar pro- 
ducts are divided by 2. Some information is lost, 
and step by step the signal is smoothed. The re- 
maining information can be restored using the 
complementary subspace Wi of Vi in Vi- i. This 
subspace can be generated by a suitable wavelet 
function I,&) with translation and dilation. We 
have 

f$ ; = 2 g(n)& -n). 0 n=n3 

(7) 

We compute the scalar products (1/2’)(f(x), 
r&/2’ - k)), i.e. the discrete wavelet coefficients, 
with 

w(i, k) = 5 g(n - 2k)c(i - 1, n). (8) 
“=n9 

The coefficients w(i, k) are obtained by convolu- 
tion with the high-pass filter g( - n), followed by 
a decimation. If n3 and n4 are limited, we have 
another FIR filtering. In the case of orthogonal 
wavelets the filters h(n) and g(n) are conjugated 
[ 151 and we have the relation 

g(n) = (- l)‘_“h(1 - n). (9) 

The 2D multiresolution analysis is generally per- 
formed separately in line and column. This does not 
lead to an isotropic vision, three wavelet functions 
are used and it is not easy to associate wavelet 
coefficients to a given pixel. Stars, and more gene- 
rally astronomical sources, are quite isotropic 
sources, no direction is privileged Thus we choose 
an isotropic wavelet transform. We need also to do 
a connection between images at different scales. As 
the redundancy is not critical we prefer to avoid the 
decimation. This led us to use the b trous algorithm 
VI, 31. 

2.3. The 6 trous algorithm 

Let us consider the 1D algorithm. As for the 
multiresolution analysis, we admit that the sampled 
data are the scalar product of the function with 

translated scaling functions: 

40, k) = <f(x), 4(x - k). (10) 

Let us consider the scalar products at the scale i: 

(11) 

If 4(x) satisfies the dilation equation, we compute 
easily c(i, k) from a scale to the double one from the 
relation 

c(i, k) = cc(i - 1, k + 2’-‘n)h(n). 
n 

(12) 

The wavelet coefficient at scale 2’ and at location 
k is computed from 

w(i, k) = cc(i - 1, k + 2’- ‘n)g(n). 
n 

(13) 

We have no decimation, i.e. no factor 2 before k. 
Therefore we need a larger step between the points. 
The jump of 2’-’ - 1 pixels in the convolutions 
gives its name to this algorithm. The choice of the 
filter h(n) is not arbitrary. Generally the solution of 
the dilation equation is irregular, and it cannot be 
used for the algorithm [6]. B-spline interpolations 
[26] are generated by binomial coefficients. For 
example, B3(x) leads to the set {A; a; $; $; 
A> (- 2 <n < 2). It is the choice we do in our 
procedure. 

For the choice of the filter g(n) we use the wavelet 
resulting from the difference between two succes- 
sive interpolations: 

w(i, k) = c(i, k) - c(i - 1, k). (14) 

So we get an easy reconstruction algorithm by 
adding all the wavelet images with the smoothest 
one. 

The 2D algorithm works with a product of 
B-splines for the successive interpolations. B3(x) is 
close to a Gaussian function and the results are 
quasi-isotropic. With B5(x) the discrepancy to the 
Gaussian is very small, and the interpolation and 
the wavelet can be considered as isotropic. 

2.4. Application to an astronomical image 

Fig. 1 shows the image of the galaxy NGC2997. 
In Fig. 2 we have plotted the image of the wavelet 
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Fig. 1. Image of the galaxy NGC2997. 

transform for three scales, and for the smoothed 
image at the fourth scale. If we add these four 
images we get exactly the original image. 

The wavelet images correspond to different 
spatial frequency bands. They show structures of 
different size; in the first image we see only the noise 
and some stars, while in the third one we can 
observe great structures like the galaxy arms. 

In Fig. 3, the wavelet transform is plotted with 
isolevel lines. For each scale we determine the stan- 
dard deviation (Ti of the distribution of the wavelet 
coefficients. Then we plotted the isolevel lines cor- 
responding to the values 3ai. This visualization is 
more compact than the previous one and shows the 
connections between the structures at different 
scales. 

3. The object definition in the wavelet transform 
space 

3.1. 27he basis of the object dejnition 

After applying the wavelet transform on the im- 
age, we have to detect, extract, measure and recog- 
nize the significant structures. The wavelet space is 
a 3D one. An object has to be defined in this space. 
A general idea for the object definition lies in the 
connectivity property. An object occupies a phys- 
ical region, and in this region we can join any pixel 
to other ones. The connectivity in the direct space 
has to be transported to the wavelet transform space 
(WTS). In order to define the objects we have to iden- 
tify the WTS pixels we can attribute to the objects. 
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Fig. 2. Wavelet transform of the galaxy. Three wavelet scales and the last smoothed image. 

At a given scale, it is clear that a given object 
leads to one connected field. A region labelling has 
to be done, scale by scale. A physical object can 
show features at different successive scales, an inter- 
scale connectivity graph has then to be established. 
Connected trees are identified from the preceding 
graph, they correspond to a WTS region which can 
be associated to a complex object. An object is 
more generally associated at a subtree. This permits 
to separate close components and to identify an 
object from its full components. The identification 
of WTS pixels related to a given object leads to 
reconstruct an image by partial restoration algo- 
rithms. 

3.2. The thresholding in the wavelet space 

50 100 150 200 250 

Fig. 3. Isolevels of the wavelet transform of galaxy NGC2997 
for three scales. 

3.2.1. The statistical distribution of the wavelet 
coefJicients 

The statistical distribution of the wavelet coeffi- 
cient depends on the noise process. In this paper, 
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we admit that we have a stationary Gaussian white 
noise for the image. In the case of a Poissonian 
noise, we can transform the pixel intensity by 
Anscombe’s transform [l] and process the data as 
Gaussian variables. This transform gives correct 
results for photon counts greater than about 30 per 
pixel, which is generally the case. For CCD obser- 
vations, the noise is described by the sum of 
a Gaussian and a Poissonian variable, and we have 
generalized Anscombe’s transform, which leads 
also to a Gaussian variable [18]. For a simple 
presentation of our vision model we further admit 
that the noise is Gaussian. 

We could analytically examine the noise distri- 
bution of the wavelet coefficients, but we have pro- 
ceeded by simulation. We compute the image of 
a simulated Gaussian noise with a variance 1 and 
no correlation from a pixel to its neighbors. Then 
we compute its discrete wavelet transform and we 
estimate the standard deviation a,(i) at each scale. 
For the image to be processed, the standard devi- 
ation o(l) is estimated from the histogram of the 
wavelet coefficients ~(1, k, I). At this scale, the 
wavelet coefficient values essentially result from the 
noise. Knowing the variation of the noise with the 
scale from the simulation we deduce the o(i) set. 

3.2.2. The signijicant pixels 

After the determination at each scale of the dis- 
tribution of the wavelet coefficients w(i, k, 1) taking 
into account the noise, we can introduce a statis- 
tical meaning of its value from the classical decision 
theory [lo]. 20 is the hypothesis that at the scale 
i the image is constant in the neighborhood of the 
pixel (k, 1). The w(i, k, I) distribution is a Gaussian 
of mean 0 of standard deviation o(i). Its probability 
distribution is 

(15) 

For a positive coefficient, the Z. rejection depends 
on the probability: 

P = Prob(W > w(i, k, l)) 

= ,d,(,s:,p,,,, exp[ - &]dW. (16) 

For a negative coefficient we examine 

P = Prob(W < w(i, k, 1)) 

(17) 

We fix a decision level E. If P > E, So is not 
excluded, and the coefficient value can be due to the 
noise. On the contrary, if P < E, we cannot consider 
at this decision level that the value results only from 
the noise and Z. must be rejected. We say that we 
have detected a significant coefficient. 

This vision model is based only on the detected 
significant pixels. Taking into account the noise 
properties, we have only to compare w(i, k, 1) to 
ka(i), where k is a function of s. We generally choose 
k = 3. 

3.3. The scale by scale field labelling 

After the identification of the significant pixels 
we do an image segmentation scale/scale in WTS. 
In our present analysis we have examined only 
positive coefficients, which correspond to light 
sources. Significant negative pixels may be asso- 
ciated to absorbing regions, but they are generally 
associated to the wavelet bumps: around a peak we 
have always negative wavelet coefficients. The cor- 
responding pixels do not belong to a real object, 
even if they are significant. 

The region labelling is done by a classical grow- 
ing technique. At each scale, we give a label to 
a pixel: 0 if the wavelet coefficient is smaller than 
the threshold, n > 0 for the contrary case. Each 
close significant pixel has the same label. We design 
by L(i, k, 1) the label corresponding to the pixel 
(k, 1) at the scale i. 

An object could be defined from each labelled 
field without taking into account the interscale 
neighborhood. We can restore an image of these 
objects from the known wavelet coefficients, but 
this restoration would not use all the information. 
A given physical object may lead to significant 
pixels at different scale, a correct restoration needs 
the whole information. 
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3.4. The interscale relation 3.6. An object as a subtree 

An astrophysical object is described as a hier- 
archical set of structures. So we have to link the 
labelled fields from a scale to the following one, in 
order to give the hierarchy. 

Let us consider a field A at a scale i and a field 
B with a label b at scale i + 1. (k,, 1,) corresponds to 
the pixel coordinates of the maximum coefficient 
w(i, k,, I,) of A. We say that A is connected to B if 

L(i + 1, k,, I,) = b. (18) 

The maximum position belongs at scale i + 1 to the 
field B. 

From the image we can extract a set of connected 
trees, corresponding to different objects. We could 
define an object as one tree, but it appears that we 
reduce in a too high manner the number of objects. 
A small star may belong to a small nebula, the tree 
corresponds to the nebula, and we do not consider 
the star if we take into account only the connected 
tree. It is the reason why we define an object as 
a subtree resulting from the image segmentation in 
the wavelet space. The considered subtrees are only 
the ones generated by all the fields which have 
a given field D(k, p) as ancestor. A subtree contains 
necessarily the leaves. 

3.5. The interscale connection trees 

From the preceding steps we have obtained a set 
of fields D(i, n) and a relation 4: 

D(i, n)YD(i + 1, m) if L(i + 1, k,, 1,) = m, (19) 

where (k,, I,) are the pixel coordinates of the maxi- 
mum value in the field D(i, n). 

We consider a field D(i + 1, m) which is con- 
nected to two fields D(i, nl) and D(i, n2). From 
these two fields we can construct the two subtrees 
Yr and ,4p2. Each subtree corresponds to a WTS 
region. We will examine in the next section how we 
can reconstruct the image of each object associated 
to each region. They are two different components 
of the image. 

This relation leads to building a set of (directed-) 
trees Yl, The trees result from the field inclusions 
from the largest scale to the smallest one. After 
this operation we can say if a large scale field 
contains smaller ones which contain smaller ones, 
and so on. 

An element of a given tree Yl is a field D(i, n). 
Two fields D(i, n) and D( j, m) belong to the same 
tree if there exists a field D(k, p) such that 

From D(i + 1, m) we built another subtree 
9’ which contains ,4p1, 9, and D(i + 1, m). In WTS 
we have merged the two regions and connected 
them by a bridge formed by the D(i + 1, m) pixels. 
In this space, the new extracted region is connected 
too. We reconstruct the image of an object which 
not only contains the previous components, but 
also takes into account an original information at 
scale i + 1. It really corresponds to a new object. 

D(i, n)4D(i + 1, nI) ... 9D(k, p), (20) 

D(j, m)YD( j + 1, ml) ... YD(k, p). (21) 

All the fields belonging to the same tree Yl have the 
same ancestor, the root, D(kl, pI) where kl is the 
largest scale for this tree and pl the corresponding 
field of pixels. 

3.7. The identi$cation of the objects 

We can summarize now this method allowing to 
identify all the objects in a given image: 
1. 

2. 

We compute the wavelet transform with the 
h trous algorithm, which leads to a set w(i, k, l), 
i 6 I. 
We determine the standard deviation of ~(1, k, 1) 
due to the noise. 

The tree can be easily constructed from its root 
by identifying from the largest scale to the smallest 
ones the fields which are connected. The leaves are 
the fields which are not connected to smallest-scale 
ones. Evidently a given field D(i, n) belongs to only 
one tree. 

3. 
4. 

5. 
6. 

We deduce the thresholds at all the scales. 
We threshold scale by scale and we do an image 
labelling. 
We determine the interscale relations. 
We extract all the connected trees from the inter- 
scale relations. 
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7. We identify all the subtrees following our defini- 
tion. 

Let us remark that this definition is very sensitive 
to the kind of wavelet transform done. We work 
with an isotropic wavelet, without decimation. 
With Mallat’s algorithm this definition must be 
revised. 

4. The partial reconstruction 

4. I. The basic problem 

Let us consider now an object 0 previously de- 
fined. It corresponds to a volume 9 in WTS. This 
volume is associated to a set Y of wavelet coeffi- 
cients such that 

L’ 3 {V(i, k, I), for (i, k, I)E B}. (22) 

9 is an image and %‘” is its corresponding 
wavelet transform. 9 can be considered as a cor- 
rect restored image of the object 6 if 

V(i, k, I) = Y+‘“(i, k, I) V(i, k, Z)E_~. (23) 

Pa designs the projection operator in the subspace 
$8 and WT the operator associated to the wavelet 
transform; we can write 

Y = (P9 0 WT)F = AY. (24) 

We have to solve the inverse problem which 
consists of determining 9 knowing A! and Y. The 
solution of this problem depends on the regularity 
of A. In many papers and books authors have 
discussed the availability of a solution to this class 
of inverse problems (for example see [7]). The size 
KL of the restored image is arbitrary and it can be 
easily set greater than the number of known coeffi- 
cients. It is sure that there exists an image fl which 
gives exactly Y in 9, the original one: the equation 
is consistent [ 191. But generally we have an infinity 
of solutions, and we have to choose among them 
the one which is considered as the correct one. The 
image is always a positive function, which leads to 
constrain the solution, but this is not sufficient to 
get a single one. 

The choice is governed by a regularization con- 
dition. Many regularization conditions were de- 
veloped for the restoration. Taking into account 

the consistency, we used first a direct simple algo- 
rithm, connected to Van Cittert’s one [27] for 
which the regularization is done by the limitation 
of the support. Then we applied another iterative 
algorithm which corresponds to minimizing the 
energy. 

4.2. Restoration by the direct algorithm 

Eq. (23) seems trivial but w(i, k, 1) has to be 
known for all coefficients, while Y(i, k, 1) is known 
only in 2. The problem is to build an array 
Y&“(i, k, I) solution of the equation, but which cor- 
responds to the discrete wavelet transform of a 
positive discrete image. 

The wavelet transform W = W(i, k, I) is conven- 
tionally split into two arrays Win and W,,, so that 
W = Win + WOut, with 

w. = W(i, k, 1) if (6 k, 1)~ 9, 
I” 0 if (i, k, /)$9 

and 

0 if (i, k, I) E 9, 

W(i, k, I) if (i, k, 1)$9?. 

(25) 

(26) 

These definitions are useful in the following deve- 
lopments but Win and W,,, cannot be considered as 
the wavelet transform of given images, they are 
only wavelet structures. 

The direct algorithm takes into account the fact 
that we have not to modify the values of the wavelet 
transform inside 9, but only outside. From this 
remark we get the relations 

where V’“‘(i, k, I) is the wavelet transform of the 
image reconstructed from Y@“(i, k, I). On account 
of the redundancy of the & trous algorithm, 
V’“‘(i, k, 1) is not equal to “/Y@)(i, k, I). 

In order to test the validity of the algorithms we 
considered first a Gaussian pattern rather typical of 
the image of an astronomical object. We start with- 
out any noise in order to examine the quality of 
the inversion. In Fig. 4 we plotted the isolevels 
of the considered Gaussian pattern. We do a set of 
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Fig. 4. Gaussian pattern without noise. 

numerical experimentations but this elongated pat- 
tern is well adapted to show the quality of the 
restoration. 

We keep only the positive coefficients; in Fig. 5 
we show the restored image with the direct algo- 
rithm. After a few iterations (4-5) the image is quite 
stabilized, the residue between %, and 9% is very 
smaI1, but there exists a discrepancy between the 
resulting Gaussian parameters and the original 
ones. After about 30 iterations the convergence is 
correct. 

The object corresponds to a subtree 97 At the 
largest scale, the maximum of the wavelet coeffi- 
cient is W(i,, kt, II). We need for a rapid conver- 
gence that 

W(i,, kt, L) > W(i, + 1, kr, It). (28) 

If this condition is not respected, the discrepancy 
between the restored and the original Gaussian 
parameters can be very important for a few iter- 
ations, and the convergence is not assured. The 
algorithm restores an image but a part of the in- 
formation is lost. 

The restored image P is compact: outside a field 
Sp the values of 9 are null. The support compact- 
ness results from the thresholding of negative 

o.o/, , , , , , , ( , , , , , ,I 
0.0 53.0 loo. 0 

Frmtm (y vIrtuei 

Fig. 5. Restoration Gaussian pattern without noise by the 
direct algorithm. 

values. In Fig. 6 we have plotted the support of the 
function F(k, 1) in the case of the Gaussian pattern. 
The support is stable from the first iteration. 

This reconstitution algorithm allows to restore 
quite exactly a Gaussian pattern knowing the 
wavelet coefficients in a compact region of the 
WTS. The accuracy is increasing with the number 
of considered scales, but a minimum of scales is 
necessary. 

4.3. Restoration by using the gradient 

The gradient is naturally introduced when we 
want to minimize the distance 1) Y - ,4(X)11 be- 
tween Y and the convolved solution A(X). We get 
the iterative relation [12] 

X’“’ = XC”- 1) + m&y - A(X’“_ 1’)). (29) 

A” is the joint operator associated to A and o is 
a scalar to be estimated. We obtain with our pre- 
vious notations 

CJrVO - CJrM- 1) + m&$(Y _ &(g”l’“-‘)))* - (30) 

The main difficulty lies in the understanding of 
the joint operator 2 which transforms a wavelet 
transform into an image. 
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Fig. 6. Support of the function resulting from the direct algo- 
rithm for the Gaussian pattern. This support is stable from the 
first iteration. 

Proposition. Zf W is a wavelet structure and F” the 
resulting image of A?(W), we have 

F = S(W) = $, { WT[W(i, k, E)])i, (31) 

where { WT [F(k, l)]li is the discrete wavelet trans- 
form of the array F(k, 1) at the scale i. 

From the b trous algorithm we get the wavelet 
and the smoothing coefficients: 

W(i, k, I) = 1 g(n, m)F(i - 1, k + 2’-‘n, I + 2’-‘m), 
“, m 

(32) 

F(i, k, I) = c h(n)h(m)F(i - 1, k + 2”-‘n, 1 + 2’-‘m). 
n, m 

We can find a discrete function y(i, k, 1) so that 

W(i, k, 1) = c y(i, k - k’, 1 - l’)F(k’, 1’) (33) 
k’, 1’ 

if p is a pixel (i, k, 1) in WTS; we can write 

W(p) = 1 m(p, k’, l’)F(k’, 1’) 
k’, 1’ 

(34) 

with 

m(p, k’, 1’) = y(i, k - k’, k - 1’). (35) 

Now we restrict the relation only to 52: 

W(p) = 1 m(p, k’, l’)F(k’, I’) for pug, 
k’. I’ 

(36) 
W(P) = 0 for ~$9. 

We get now the result from the joint operator on 

W(p): 

&k, f) = c m(p, k, 0 W(P) 

= ,:F, y(i, k’ - k, 1’ - 1) W(i, k’, I’) 
. .’ 

(37) 

(38) 

= 7 k;, y(i, k’ - k, 1’ - 1) W(i, k’, I’). 

We note 

(39) 

kVi(j, k, I) = 1 y(j, k’ -k, 1’ - l)W(i,k’, I’). (40) 
k’, I’ 

FVi ( j, k, I) is the wavelet transform at scale j of the 
wavelet transform of the function F(k, 1) at scale i. 
We get finally 

F(k, 1) = C fii(i, k, 1). (41) 

4.3.1. The restoration algorithm 
We have now the following steps: 
Initialization: Fto) is obtained from the recon- 
struction of Y. 
Wavelet transform of the last approximation: 

F(“-I)(& k, 1) = WT[g’“-‘)(k, l)]. (42) 

Projection of P(‘- ‘) in 9: 

-V@-‘)(i, k, 1) = PCn-‘)(i, k, I) t/iELB, (43) 

I/(“-‘)(i, k, 1) = 0 if i$g. (44) 

Residual image obtained from the joint oper- 
ator: 

WrCnU1)(i, k, 1) = T(i, k, 1) - V’“-“(i, k, 1), 

Tr(“- “(k, 1) = &?( Wr(“- ‘)) 
(45) 

= i$I WT[(Wr(“-‘)(i, k’, l’)](i, k, 1). 
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5. Iterative correction: 

$“) = SC”- 1) + Opr(“- 1) (46) 

6. Thresholding in order to get a positive function: 

@“) = Max(0 @“)). (47) 

7. Come back to step 2. 
We test the WY(“)@, k, 1) energy in order to stop the 
process. 

4.3.2. Choice of w 
We note 4(X’“‘) = \I Y - A(X(“l)l\ and cc(“) is o at 

step n. We must have 

q(X’“- 1’) < 4(X’“‘). (48) 

We start from relation (29) written now: 

X’“’ = X’” - 1) + w(“)Xr(“- 1) (49) 

We have 

q(X’“‘) = 11 Y - A(X’“‘)jI (50) 

= 1) y - /4(X’“_ 1’) - (-J”)Xr(“_ 1))) (51) 

= IIY - A(X’“-“)II + o’“‘Z((A(Xr’“-l’)II 

- 2w’“‘( Y - A(X’“- “), A(Xr’“- “)) (52) 

= q(X’“-“) + W’“‘2)\A(Xr(“-” III 

- 2d”)(A(Y - .4(X(“-‘))) , Xr(“-1)) (53) 

= q(x(“-l)) + W(“q/qXr(“-l) )II 

- 2d”)IIXr(“-1)II. (54) 

For q(X’“-“) < q(X(“)) it is sufficient to have 

Ocnj < 211Xr(“-1)II 
IIA(Xr’“-‘))(I’ 

(55) 

4(X(“)) is minimal for 

(56) 

In this case the convergence is optimal. Replacing 
Xr(“-‘) by Pr(“-l) we get 

(57) 

o(“) can be chosen constant (fix step or Land- 
weber’s algorithm) or adapted at each step (true 
gradient algorithm). As the energy is maintained in 
the wavelet transform II Fr(“- I) II is always greater 
than Il?VriE- “11. S o we can choose for a fix step 
algorithm 

cJ(“) = fJJ = 1. (58) 

4.3.3. Numerical experiment without noise 
In Fig. 7 we show the restored image of the 

Gaussian pattern. Compared to the direct algo- 
rithm, the convergence is faster but the computing 
time is quite similar, taking into account the in- 
crease of the complexity for an iterative step. After 
about 20 iterations the convergence is correct. The 
number of needed scales is the same as previously. 

The support of the restored image g is larger 
than the one resulting from the direct algorithm. In 
Fig. 8 we have plotted the evolution of the recon- 
struction support for a set of steps. Even if the 
image field is extended step by step, the support 
converges to a compact field. The quality of the 
restoration seems generally better after a few iter- 
ations. The profiles are smoother. 

Fig. 7. Restoration Gaussian pattern without noise by the 
gradient algorithm. 
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Fig. 8. Evolution of the restored function support with the 
number of iterations in the case of the Gaussian pattern. 

4.4. Algorithms properties 

4.4.1. Algorithms and regularization 
The previous algorithms were introduced with- 

out taking into account any regularization condi- 
tion. In the direct algorithm case, if we take into 
account the wavelet compactness, the wavelet in- 
verse transform and the positivity thresholding, the 
regularization seems to be associated to a mini- 
mum support constraint: the number of not null 
pixels is similar to the number of given wavelet 
coefficients; it is impossible to reduce this number 
without loss of the consistency. 

The gradient algorithm results from a least mean 
squares (LMS) condition. The number of pixels can 
be higher than the number of given wavelet coeffi- 
cients, which leads to an infinity of solutions with 
a null distance between the given and the restored 
wavelet coefficients. Thus the LMS condition is not 
sufficient to qualify this algorithm in this specific 
case. Let us return to the inverse problem; we write 
it as 

7V-J = Cy(r, p)~t(p), 
P 

(59) 

where r designs the element of 9, and p is a pixel of 
the image function 9. The coefficients y(r, p) are 
derived of the wavelet transform with the 2~ trous 
algorithm. If the number of pixels is greater than 
the number of known wavelet coefficients, we can- 
not solve system (59) without a regularization con- 
dition. We consider the minimum of energy one: 
cP P(p) is minimum. Taking into account the 
constraints we obtain 

F(P) - 1 WMr, P) = 0, 
I 

(60) 

where J(r) is the Lagrange multiplier associated to 
T(r). In fact, we can also consider ;L(r) as a wavelet 
structure, and relation (60) means that the function 
is reconstructed from this wavelet structure. We 
can remove P(p); this leads to the relation 

“09 = 1 T(r, MS), (61) 

where 

r(r, s) = C y(r, P)Y(~, P). 
P 

(62) 

The resolution of Eq. (61) can be done iteratively, 
from example with Van Cittert’s algorithm: 

$“)(r) = Iv’“- 1) (r) + V(r) - c T(r, s)l’“- l)(s). (63) 
s 

Relation (63) can be rewritten taking into account 
Eqs. (60) and (61): 

l’“‘(r) = lcn-l)(r) + Y(r) - cy(r, p)F-‘“-l’(p). (64) 
P 

Now we multiply the equation by the matrix y(r, p) 
and we get 

+ Cy(r, P) r(r) - Cr(r, P)@“-r’(p)‘. 
I [ P 1 

(65) 

Formally, relation (65) is strictly the same as the 
one derived from the gradient with a fix step 
(w = 1) and taking into account the thresholding 
outside the volume _GB in WTS. The gradient algo- 
rithm can be so derived from the minimum energy 
regularization condition. 
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4.4.2. Reconstruction algorithms as projection 
operators 

We saw that different reconstruction algorithms 
lead to different restored images. This fact is 
directly connected to the ill-posed property of 
this inverse problem. In fact, we always get 

V(I) x Y(r) Vre9, (66) 

where W(r) designs the wavelet transform of the 
restored image. The quality of the approximation 
can be limited only by the computer precision. 

If we apply on the image F(p) this vision model, 
we again extract in the same 9 region the same 
wavelet coefficients. The same reconstruction algo- 
rithm restores the same image function F(p). The 
object reconstruction algorithm B can be consi- 
dered as a projection operator. But 9 is not a linear 
operator. The non-linearity is many times introduc- 
ed in this procedure: in order to define the volume 
C@ by the thresholding in WTS, and by the thre- 
sholding for assuming the positivity constraint. 

4.4.3. Restoration of noise Gaussian patterns 
We have done a set of numerical experiments 

with noisy Gaussian patterns. The restoration 

quality was always better with the gradient algo- 
rithm than with the direct one. We remarked also 
that the convergence with a fix step leads always to 
a stable solution, while the variable step algorithm 
leads to instabilities for a low signal to noise ratio 
(SNR). SNR is defined as the ratio of the standard 
deviation of the signal to the noise one. 

In Fig. 9 we plotted the Gaussian pattern with 
SNR equal to 10 and its corresponding restoration 
using the gradient algorithm. The pattern is quite 
correctly restored, and the convergence is quite 
similar to the one without noise. In Fig. 10 SNR 
is equal to 1; some distortions exist but the accu- 
racy is generally sufficient. In Fig. 11 SNR is equal 
to 0.1; the restoration is too bad for a further 
analysis. 

These experiments show that it is possible to 
extract a significant pattern even for a small SNR. 
This would be quite impossible by the other 
vision models we described in the introduction. 

4.4.4. InJiuence of close objects 
In the upper experiments, we have considered 

one isolated Gaussian, but generally astronomical 
objects may be close, and it would be difficult to 

J 
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“.“~ 
0.0 50.0 100.0 

Posltlon (y Ull-tuel) 

Fig. 9. Gaussian pattern with SNR 10 and its restored image by the gradient algorithm. 
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Fig. IO. Gaussian pattern with SNR 1 and its restored image by the gradient algorithm. 

t 

PosItton (y vIrtueI 

Fig. 11. Gaussian pattern with SNR 0.1 and its restored Image by tne graalenr algornnm. 

analyze them separately. We consider now two left component is plotted in Fig. 13. The algorithm 
Gaussian patterns at a variable distance. needs always to work with Zmax+l scales, but the 

In Fig. 12 the sum of two Gaussian patterns at maximum can belong to a field containing the two 
distance 40 is plotted, while the restoration of the objects. 
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Fig. 12. The sum of the Gaussian patterns at distance 40. Fig. 14. The reconstruction of the left Gaussian pattern after 
taking into account the influence of the right component. 

wl and YVZ. Their significant wavelet structures are 
VI (in 91) and V2 (in 92). If the objects are too 
close, 2% brings a significant contribution to Vi, 
and 3% to V-2: 

SO.0 loo. 0 

Fnsltmn ly wrtuel) 

Fig. 13. The reconstructlon of the left Gaussian pattern. 

In the case of too close objects, the reconstruc- 
tion can be improved by the following iteration. Let 
us consider an image 9 sum of two objects with 
images F1 and F2. Their wavelet transforms are 

Y-1 = ~11 + v-12, (67) 

where Y-1 I is the wl coefficients E 91 and VI 2 the 
7372 coefficients E $31. 

We improve the 91 restoration if we reduce the 
component nlr12, i.e. the $2 influence. We get 
an approximate solution 2% of 2%. Subtracting 
92 from the initial image 9(k, I) the influence of 
55 on 91 obviously decreases. We can do the 
same operation for 2%. Then we iterate up to the 
convergence. 

This algorithm leads to a real improvement of 
the quality of the restoration, for intermediate 
distances. For too close patterns, the initial pat- 
terns are too far from the real ones, and the 
algorithm does not give a correct solution. In Fig. 
14 we have plotted the effect on the left Gaussian 
component. The quality of the restoration is 
quite perfect, in spite of the interaction between 
the patterns. 
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Fig. 15. The reconstruction of the sum of two Gaussian patterns 
at 2~7. 

The algorithm could be applied to more patterns, 
but the complexity of the computations gives a 
serious restriction on the number of objects to be 
restored. 

The algorithm restores each component if the 
distance d is greater than 3a. In Fig. 15 we have 
plotted restoration obtained on the sum of two 
Gaussian patterns at a distance 2a. We have not 
succeeded in separating these patterns by our vi- 
sion model. 

4.4.5. Superimposed patterns 

At last, we examine another important case, the 
one of superimposed patterns. In Fig. 16 we have 
plotted a central cut of the image of a narrow 
Gaussian function superimposed on a larger one. 
We have plotted in the same figure the original 
narrow pattern and the restored one. We remark 
that the influence of the larger background struc- 
ture is negligible. 

The quality of the restoration depends on the 
separation between the patterns in WTS. We get no 
significant bias for a background pattern which can 
be considered as locally constant for the narrow 
Gaussian function. 

Fig. 16. The central cut of the superimposed Gaussian patterns. 
The original narrow pattern is plotted in solid line and the 
restored one in dashed line. 

5. Conclusion 

We have built a procedure which permits to 
extract the whole set of objects contains in an 
image. The objects are defined as fuzzy structures 
of different sizes, hierarchically superimposed. 
This vision model resulting from the wavelet trans- 
form permits to detect, measure and recognize 
an object as complex as possible. The procedure 
does not introduce any prior information on the 
stellar profile or on the scale of the background 
variations. This is very important for automated 
procedures. 

The detection takes into account the statistical 
noise. We have admitted a Gaussian noise, but 
this can be extended to other kinds of noise, taking 
into account the resulting distribution of the 
wavelet coefficients. Some experiments on real as- 
tronomical images have shown that the detection 
is performed up to the faintest objects we can 
observe. 

The object characteristics are simply computed 
from the image which is restored from each of them. 
Our experiments showed also that the accuracy 
for the photometry is compatible with the noise 



362 A. Bijaoui, F. RuhlSignal Processing 46 (1995) 345-362 

statistic. In another paper for an astronomical re- 
view we will examine with details the performances 
of the vision model, compared to previous ones. 

The main disadvantage lies in the number of 
used data. The ~2 trous algorithm increases the data 
by the number of scales. In our experiments we 
used 4-5 scales. The increase is too high for large 
astronomical images. The introduction of a less 
redundant algorithm would lead to accelerate the 
extraction of the information and to a data com- 
pression. The adaptation to an isotropic pyramidal 
transform [3] leads to some difficulties related to 
the interscale connection. 

Acknowledgements 

We thank A. Lannes, J.M. Petit and J.L. Starck 
for helpful discussions and comments. 

References 

[l] F.J. Anscombe, “The transformation of Poisson, binomial 
and negative-binomial data”, Biometrika, Vol. 15, 1948, 
pp. 246254. 

[2] A. Bijaoui, “Skybackground estimation and applications”, 
Astron. Astrophys., Vol. 84, 1980, pp. 81-84. 

[3] A. Bijaoui, “Algorithmes de la transformation en on- 
delettes. Applications en astronomie”, in: Ondelettes et 
Paquet d’Ondes, INRIA, 1991, pp. 115-140. 

[4] A. Bijaoui, G. Lago, J. Marchal and C. Ounnas, “Le 
traitement automatique des images en Astronomie”, in: 
Traitement des Images et Reconnaissance des Formes, 
INRIA, 1978, pp. 848-854. 

[S] R.M. Bracewell, The Fourier Transform and its Applica- 
tions, McGraw-Hill, New York, 1965, Chapter 10, p. 189. 

[6] I. Daubechies, “Orthonormal wavelets of finite support - 
Connection with discrete filters”, in: J.M. Combes et al., 
eds., Wavelets, Springer, Berlin, 1989, pp. 38866. 

[7] G. Demoment, “Image reconstruction and restoration: 
Overview of common estimation structures and prob- 
lems”, IEEE Trans. Acoust. Speech Signal Process., Vol. 37, 
1989, pp. 2024-2036. 

[8] B.R. Frieden, “Image enhancement and restoration”, in: 
T.S. Huang, ed., Picture Processing and Digital Filtering, 
Springer, Berlin, 1975, pp. 177-249. 

[9] A. Grossmann, R. Kronland-Martinet and J. Morlet, 
“Reading and understanding continuous wavelet 

Cl01 

Cl11 

Cl21 

Cl31 

Cl41 

WI 

Cl61 

t171 

Cl81 

Cl91 

WI 

P.11 

c221 

transform”, in: J.M. Combes et al., eds., Wauelets, Springer, 
Berlin, 1989, pp. 2-20. 
W.W. Harman, Principles ofthe Statistical Theory ofCorn- 
munication, McGraw-Hill, New York, 1963, Chapter 11, 
p. 217. 
M. Holdschneider, R. Kronland-Martinet, J. Morlet and 
P. Tchamitchian, “A real-time algorithm for signal analy- 
sis with the help of the wavelet transform”, in: J.M. 
Combes et al., eds., Wavelets, Springer, Berlin, 1989, 
pp. 286297. 
L. Landweber, “An iteration formula for Fredholm inte- 
gral equations of the first kind”, Amer. J. Math., Vol. 73, 
1951, pp. 615-624. 
0. Le Ftvre, A. Bijaoui, G. Mathez, J.P. Picat and G. 
Lelievre, “Eletronographic BV photometry of three distant 
cluster of galaxies. I. Method”, Astron. Astrophys., Vol. 
154, 1986, pp. 92-96. 
J. Littlewood and R. Paley, “Theorems on Fourier series 
and power series”, J. London Math. Sot., Vol. 6, 1931, pp. 
23%233. 
S. Mallat, “Multifrequency channel decompositions of 
images and wavelet models”, IEEE Trans. Acoust. Speech 
Signal Process., Vol. 37, 1989, pp. 2091-2110. 
J. Morlet, G. Arens, E. Fourgeau and D. Giard, “Wave 
propagation and sampling theory I and II”, Geophysics, 
Vol. 47, 1982, pp. 203-236. 
R. Murenzi, “Wavelet transforms associated to the n-di- 
mensional Euclidean group with dilations: Signal in more 
than one dimension”, in: J.M. Combes et al., eds., 
Waoelets, Springer, Berlin, 1989, pp. 239-246. 
F. Murtagh, J.L. Starck and A. Bijaoui, “Image restoration 
with noise suppression using a multiresolution support”, 
Astron. Astrophys. Sup. Ser., Vol. 112, 1995, pp. 179-189. 
W. Pratt, Digital Image Processing, Wiley, New York, 
1978, Chapter 8, p. 207. 
A. Rosenfeld, Picture Processing, Academic Press, New 
York, 1969, p. 127. 
E. Slezak, A. Bijaoui and G. Mars, Astron. Astrophys., 
Vol. 200, 1988, p. l-20. 
E. Slezak, G. Mars, A. Bijaoui, C. Balkowski and P. Fon- 
tanelli, Astron. Astrophys. Sup. Ser., Vol. 74, 1988, 
pp. 83-106. 

[23] J.-L. Starck and A. Bijaoui, “Filtering and deconvolution 
by the wavelet transform”, Signal Processing, Vol. 35, No. 
3, February 1994, pp. 195-211. 

[24] R.S. Stobie, “The Cosmos image analyzer”, Pattren Recog- 
nition Leti., Vol. 4, 1986, pp. 317-324. 

[25] G. Strang, “Wavelets and dilation equations: A brief intro- 
duction”, SIAM Rev., Vol. 31, 1989, pp. 614-627. 

[26] M. Unser and A. Aldroubi, “Polynomial splines and 
wavelets - A signal processing perspective”, in: C.K. Chui, 
ed., Wavelets, A Tutorial in Theory and Applications, Aca- 
demic Press, New York, 1992, pp. 91-122. 

[27] P.H. Van Cittert, 2. Physik, Vol. 69, 1931, p. 298. 


